GERENCIAMENTO DAS ÁGUAS DO AQÜÍFERO CAIUÁ NA GLEBA XV DE NOVEMBRO, MUNICÍPIO DE EUCLIDES DA CUNHA PAULISTA, PONTAL DO PARANAPANEMA – SP

Prandi, Emílio Carlos¹; Oliveira Filho¹, João Augusto¹; Netto, Fernando Antônio Rodrigues¹ Sugui, Osvaldo Massacasu²; Polegato, João Carlos³; Laperuta, Eric Daleffe¹

Resumo – O Aqüífero Caiuá, localizado no extremo sudoeste do Estado de São Paulo apresenta-se contínuo e uniforme, possuindo Permeabilidade Aparente de até 3 m/dia e Transmissividade Aparente de até 300 m²/dia. Estes parâmetros indicam condições favoráveis para a exploração de águas subterrâneas, no entanto, existem limites para a sua exploração. Tais limites podem levar a região da Gleba XV de Novembro, onde já existem mais de 100 (cem) poços perfurados, a se tornar uma região de conflito de uso, em função da quantidade de poços que foram perfurados na região e da demanda reprimida que ainda existe. Este trabalho avalia a solicitação de outorga de 96 poços localizados em uma área de 150 Km² e os limites que deverão ser considerados para a emissão de outorga de novos poços.

Abstract – The Caiuá Aquifer, in the south –west of the São Paulo State, is continuos and regular. About one hundred deep wells were drilled in this Aquifer, in a place called Gleba XV de Novembro, for supply smalls properties in a area of 150 Km². Monitoring wells revealed importants changes in the groundwater condictions during the time. Although the Caiuá Aquifer be a good source of water, there is limits for its exploitation. This work try to define this limits.

Palavras-chave – Gerenciamento, Aquífero Caiuá, Pontal do Paranapanema.

APRESENTAÇÃO

Pontal do Paranapanema é a denominação dada, pelo Sistema Integrado de Gerenciamento de Recursos Hídricos do Estado de São Paulo, para a Unidade de Gerenciamento de Recursos Hídricos de número 22, no extremo sudeste do Estado de São Paulo, conforme a Figura 1. A Região do Pontal do Paranapanema, de baixa ocupação demográfica e tida como uma das regiões mais pobres do Estado de São Paulo. Tinha como características 1) a existência de grandes propriedades rurais que exploravam a pecuária e 2) um grave problema fundiário, que passa a ser resolvido (CBH-PP, 2001).

¹ DAEE Rua Benedito Mendes Faria, 40 A, Vila Hípica, Marília, SP CEP 17520-520 email - bpp@daee.sp.gov.br

² DAEE Rua Desbravador Ceará, 438, Vila Dubos, Pres. Prudente, SP CEP 19015-190 email - cbhpp@stetnet.com.br

³ DAEM. Av. Santo Antônio 1817, Vila Polom, Marília, SP CEP 17506-040 email - polegato@terra.com.br

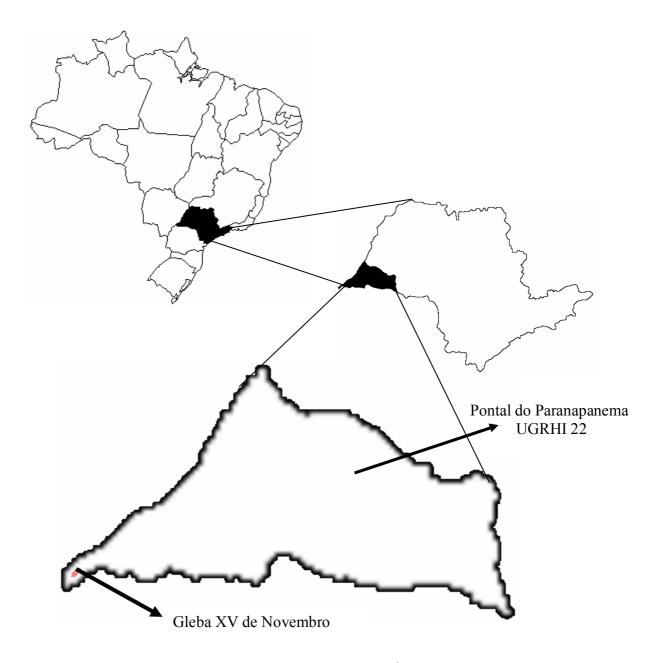


Figura 1 – Mapa de localização da Área em estudo

Tal característica de ocupação tem se modificado com a instalação de assentamentos rurais, onde pequenas propriedades são agrupadas em glebas e ocupadas por famílias que desenvolvem a pecuária e a agricultura.

Para o atendimento das necessidades hídricas destas propriedades, nesta região de baixa densidade hidrográfica, estão sendo perfurados poços tubulares profundos. O Aqüífero que se explora é o Caiuá.

No Município de Euclides da Cunha Paulista instalou-se a Gleba XV de Novembro, onde foram perfurados mais de 100 (cem) poços tubulares profundos explorando águas do Aqüífero Caiuá, dos quais 97 encontram-se outorgados pelo Departamento de Águas e Energia Elétrica do Estado de São Paulo.

As características principais dos poços estão apresentadas na Tabela 1.

Tabela 1-Poços perfurados na Gleba XV de Novembro (localização e características do uso)

Número do	La	ocal		Coorde	nadas	Cota	Prof.	N.E.	N.D.	Q.	S
Poço	Setor	Qdr.	Lt.	N-S	E – W	(m)	(m)	(m)	(m)	(m ³ /h)	(m)
PTP-01	6 (R7)	C	19	7519,255	332,407	391	86	35,95	37,62	9,0	1,67
PTP-02	6 (R7)	С	18	7519,228	332,362	393	90	39,38	45,63	7,2	6,25
PTP-03	6 (R7)	С	20	7518,806	331,813	395	86	51,10	65,38	7,2	14,26
PTP-04	6 (R7)	Α	5	7519,351	330,969	395	80	45,21	60,12	8,0	14,91
PTP-05	6 (R7)	С	16	7519,833	332,893	402	90	53,16	58,74	6,5	5,58
PTP-06	6 (R7)	В	9	7519,048	331,695	385	80	32,19	36,01	9,0	3,82
PTP-07	6 (R7)	В	10	7518,843	330,698	375	80	29,60	35,81	7,2	6,21
PTP-08	6 (R7)	В	11	7518,374	330,897	400	80	46,49	56,86	7,2	10,37
PTP-09	6 (R5)	Α	1	7520,022	326,432	382	80	43,67	51,43	7,2	7,76
PTP-10	6 (R5)	Α	5	7519,362	326,893	379	80	35,20	42,53	7,2	7,33
PTP-11	3	P	10	7519,949	325,754	392	90	52,10	64,66	7,2	12,56
PTP-12	3	P	9	7519,645	325,645	401	96	60,69	66,64	7,2	5,95
PTP-13	3	P	8	7519,476	325,638	401	100	62,18	65,77	6,5	3,59
PTP-14	3	P	6	7519,126	325,679	400	96	57,45	66,45	7,2	9,00
PTP-15	3	P	3	7513,988	326,219	415	100	65,49	89,53	6,0	23,59
PTP-16	3	F	1	7517,608	326,996	418	96	53,73	59,80	7,2	6,07
PTP-17	3	F	2	7517,872	326.866	425	96	56,70	61,17	6,5	4,47
PTP-18	3	Е	5	7517,432	326,887	408	90	54,66	66,81	6,5	12,15
PTP-19	3	О	4	7517,856	326,038	428	110	71,47	73,40	6,5	1,91
PTP-20	3	О	5	7517,460	326,020	420	100	67,07	68,66	6,0	1,59
PTP-21	3	О	6	7517,783	325,756	407	100	60.70	64,31	6,5	3,61
PTP-22	3	О	8	7518,244	326,344	415	100	64,51	72,20	8,0	7,69
PTP-23	3	N	10	7518,689	324,769	380	70	31,22	39,49	8,0	8,27
PTP-24	3	N	7	7517,441	324,234	407	86	48,20	54,28	7,2	6,08
PTP-25	3	N	13	7517,840	325,932	425	100	70,55	75,07	7,2	4,52
PTP-26	3	N	12	7517,475	326,191	425	100	64,38	77,63	8,0	13,25
PTP-27	3	N	3	7516,986	324,357	412	100	66,42	67,93	8,0	1,51
PTP-28	3	M	2	7517,520	323,823	375	86	36,65	38,50	8,0	1,85
PTP-29	3	L	4	7517,676	322,977	375	80	37,61	40,38	8,0	2,77
PTP-30	3	K	10	7517,283	323,004	393	90	45,34	49,30	8,0	3,96
PTP-31	3	K	5	7517,127	321,918	400	100	62,40	66,72	8,0	4,32
PTP-32	3	K	3	7516,476	322,012	4209	110	77,14	80,06	6,5	2,92
PTP-33	3	D	6	7516,712	326,587	385	80	26,78	31,42	8,0	4,64
PTP-34	3	J	5	7517,010	324,713	420	96	72,72	75,40	7,2	2,68
PTP-35	3	С	5	7515,585	325,721	390	80	26,19	35,20	9,0	9,01
PTP-36	2	N	2	7515,435	320,712	408	100	62,35	66,65	6,5	4,30
PTP-37	2	N	3	7515,319	321,197	405	106	67,98	75,50	6,5	7,52
PTP-38	2	J	16	7515,089	320,339	386	90	53,58	58,26	6,5	4,68
PTP-39	2	J	17	7515,185	320,589	405	96	59,18	70,52	6,5	11,34
PTP-40	2	J	19	7515,148	321,001	412	106	65,75	67,86	6,5	2,11
PTP-41	3	В	1	7514,837	324,257	375	80	32,37	37,18	8,0	4,81
PTP-42	3	A	9	7514,625	323,591	380	86	47,93	54,45	8,0	6,523
PTP-43	3	Α	7	7514,586	322,978	385	80	41,16	49,76	8,0	8,60
PTP-44	3	Н	6	7515,151	323,373	395	90	55,50	60,03	7,2	4,53
PTP-45	3	Н	3	7515,335	321,946	415	110	73,85	79,81	7,2	5,96
PTP-46	3	G	6	7515,164	321,581	418	100	69,95	73,35	6,5	3,40

Número do	L	ocal		Coorde	nadas	Cota	Prof.	N.E.	N.D.	Q.	S
Poço	Setor	Qdr.	Lt.	N-S	$\mathbf{E} - \mathbf{W}$	(m)	(m)	(m)	(m)	(m^3/h)	(m)
PTP-47	3	G	4	7514,652	321,429	415	106	67,00	69,24	6,5	2,24
PTP-48	3	G	1	7514,637	321,274	405	106	64,95	66,70	6,5	1,75
PTP-49	2	M	12	7516,522	318,896	378	80	31,60	34,50	8,0	2,90
PTP-50	2	M	10	7515,444	319,127	385	80	43,35	46,73	7,2	3,38
PTP-51	2	L	8	7516,887	317,778	368	80	31,41	40,85	7,2	9,44
PTP-52	2	L	6	7515,813	317,881	375	80	36,18	44,32	7,2	8,14
PTP-53	2	M	3	7515,762	317,943	370	80	41,58	45,84	6,0	4,26
PTP-54	2	M	2	7515,494	317,896	380	80	45,30	47,63	7,2	2,33
PTP-55	2	K	9	7516,275	316,923	358	80	27,05	32,77	7,2	5,72
PTP-56	2	K	6	7516,851	316,931	362	80	30,55	35,90	8,0	5,35
PTP-57	2	J	12	7515,277	319,835	388	80	43,42	48,70	8,0	5,28
PTP-58	2	Н	8	7514,246	317,482	388	86	46,20	48,54	7,2	2,34
PTP-59	2	J	7	7514,257	319,854	390	80	42,74	48,84	6,5	6,10
PTP-60	2	J	9	7514,108	320,589	402	96	57,41	59,09	6,5	1,68
PTP-61	2	J	10	7514,252	320,839	406	96	60,22	63,04	6,5	2,82
PTP-62	2	F	7	7513,437	320,249	395	86	51,12	57,41	6,5	6,29
PTP-63	2	F	4	7513,363	319,985	388	86	46,80	50,81	6,5	4,01
PTP-64	2	F	3	7513,289	319,662	375	80	35,66	40,20	8,0	4,54
PTP-65	2	G	1	7513,627	320,532	400	96	55,89	59,83	6,5	3,94
PTP-67	2	C	1	7513,228	320,031	382	82	45,81	51,04	6,5	5,23
PTP-68	1	Н	1	7514,292	313,157	372	80	41,32	49,26	8,0	7,94
PTP-69	1	С	15	7514,464	314,680	388	90	52,30	55,58	7,2	3,28
PTP-70	1	Е	15	7513,914	313,443	362	80	29,14	44,24	7,2	15,10
PTP-71	4	Q	2	7516,500	327,914	420	90	62,82	64,26	7,2	1,44
PTP-72	3	A	4	7513,937	324,115	375	80	40,77	49,61	7,2	8,84
PTP-73	3	A	10	7514,467	323,736	398	90	56,00	61,96	7,2	5,96
PTP-74	3	D	10	7516,392	326.073	412	90	58,67	63,05	7,2	4,38
PTP-75	3	Н	9	7515,458	322,865	418	116	75,20	80,5	6,5	5,30
PTP-76	3	1	5	7515,902	323,752	397	86	47,55	51,85	7,2	4,30
PTP-77	3	K	9	7516,288	323,102	402	96	57,52	64,23	6,5	6,71
PTP-78	3	K	4	7516,354	322,099	415	100	72,50	79,32	6,5	6,82
PTP-79	3	О	9	7518,437	326,567	410	96	60,05	65,55	6,5	5,50
PTP-80	2	F	8	7513,448	320,956	403	96	58,81	63,07	7,2	4,26
PTP-81	2	J	11	7514,066	321,502	408	106	66,85	69,16	6,5	2,31
PTP-82	1	В	15	7511,573	315,604	367	80	34,17	36,68	7,2	2,51
PTP-83	1	G	1	7519,475	315,961	365	80	30,72	33,51	8,0	2,79
PTP-84	2	K	13	7516,173	317,004	354	80	30,43	39,51	7,2	9,08
PTP-85	3	K	8	7515,891	323,151	412	100	61,93	68,31	6,5	6,38
PTP-86	3	N	17	7514,336	317,829	387	86	48,91	52,2	7,2	3,39
PTP-87	2	L	1	7517.989	325,071	392	80	34,12	39,76	7,2	5,54
PTP-88	3	D	4	7516,647	325,677	403	86	50,90	56,95	7,2	6,05
PTP-89	3	N	2	7516,754	324,506	405	94	54,52	7529	6,0	20,77
PTP-90	3	L	1	7515,925	323,358	402	90	57,44	59,98	6,5	2,54
PTP-91	3	K	7	7515,596	322,779	423	116	76,75	81,00	6,5	4,25
PTP-92	3	A	3	7513,849	323,778	378	80	44,28	50,43	7,2	6,15
PTP-93	2	Е	8	7513,315	317,426	388	80	41,72		7,2	3,53
PTP-94	2	L	3	7514,881	317,141	383	80	42,00	44,76	7,2	2,76
PTP-95	1	Е	9	7512,148	315,026	372	80	35,96	41,60	8,0	5,64

Número do	Local			Coordenadas		Cota	Prof.	N.E.	N.D.	Q.	S
Poço	Setor	Qdr.	Lt.	N-S	$\mathbf{E} - \mathbf{W}$	(m)	(m)	(m)	(m)	(m^3/h)	(m)
PTP-96	1	В	9	7511,044	314,500	368	80	30,45	35,20	8,0	4,75
PTP-97	1	Α	11	7511,212	314,407	360	80	30,46	37,24	7,2	6,78

Neste trabalho analisa-se os aspectos do Aqüífero explorado e os fatores que, ligados à estes aspectos, podem condicionar as novas outorgas a serem emitidas na região da Gleba XV de Novembro.

AQÜÍFERO CAIUÁ

O Aquífero Caiuá é formado pelos arenitos de granulação fina e média, onde ocorrem frações de muito fina a grosseira, com o teor de matriz variando de 5 a 15%. Estes arenitos compõem, segundo Almeida et alii (1981) a Formação Caiuá, termo inferior do Grupo Bauru. Os grãos que formam estes arenitos apresentam cobertura por película de óxido de ferro ou limonita. A fração areia média apresenta bom arredondamento, e as frações mais finas apresentam arredondamento moderado a sub-angular. São comuns estruturas do tipo estratificações cruzadas, predominantemente acanaladas e marcas onduladas, que evidenciam origem aquática para estes sedimentos (Salamuni et alii, 1981).

A espessura média destes sedimentos na região em análise é de 100 metros, estando depositado, por discordância litológica e erosiva, sobre os basaltos da Formação Serra Geral.

Segundo o DAEE (1979), este Aqüífero apresenta-se contínuo e uniforme, possuindo Permeabilidade Aparente de até 3 m/dia e Transmissividade Aparente de até 300 m²/dia. Estes parâmetros, associados às informações de boas produtividades de campo indicam as condições favoráveis para a exploração de águas do mesmo. No entanto, existem limites para a sua exploração. Rosa Filho (1982), em estudos realizados sobre poços perfurados neste Aqüífero, no Noroeste do Paraná já indica "diminuição do rendimento de poços, bem como da real capacidade de produção..." . Este Autor, ao realizar testes de interferência em quatro poços lá perfurados determinou, em um deles, rebaixamentos superiores a 5 cm a até 1200 metros de poços bombeados a uma taxa de 22 m³/h, com rebaixamentos no poço de até 33,05 m.

A EXPLORAÇÃO DE ÁGUAS SUBTERRÂNEAS NA GLEBA XV DE NOVEMBRO

Em toda a região do Pontal do Paranapanema, principalmente nos Municípios de Euclides da Cunha Paulista, Rosana, Presidente Epitácio e Teodoro Sampaio, estão sendo instaladas zonas de assentamentos rurais. O abastecimento destas propriedades tem sido feito através da perfuração de poços tubulares profundos. Tomou-se o exemplo da Gleba XV de Novembro para a análise dos

limites que devem ser avaliados para a emissão de outorgas por parte do órgão concedente, neste caso o Departamento de Águas e Energia Elétrica do Estado de São Paulo – DAEE.

Na gleba XV de Novembro foram solicitadas outorgas de uso para 96 poços (Tabela 1), todos eles usados apenas para atendimento das necessidades básicas das propriedades. Tais poços estão concentrados em uma área de 150 Km². A distância entre os poços é bastante variável, mas existem poços perfurados a menos de 200 metros uns dos outros, como é o caso dos poços 36, 37, 38, 39, 40, 45, 46, 47, 48, 60, 61 e 81, mostrados na figura 2.

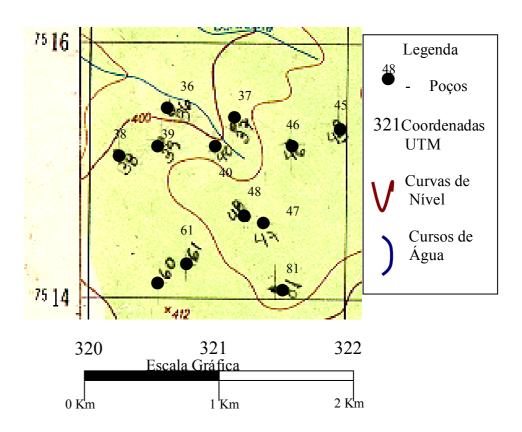


Figura 2 – Área de grande concentração de poços na Gleba XV de Novembro.

Os poços exploram águas subterrâneas do Aqüífero Caiuá e foram instalados entre as cotas 354 m e 429 m, ou seja, a máxima variação de altitude entre os poços foi de 75 metros. O nível estático dos poços variou de 26,2 a 77,1 metros, ou seja uma variação de 54,9 metros entre o nível estático mais raso e mais profundo. Há uma nítida correlação entre a cota do terreno e a profundidade do nível estático. Nota-se então que a permeabilidade e a transmissividade do Aqüífero são altas o suficiente para que a topografia interfira pouco no topo da zona saturada do mesmo.

Como os poços que estão sendo explorados apresentam uma grande variação em termos de Vazões Específicas, sendo que a maior vazão específica é de 5, 4 m³/h/m e a menor é de 0,39 m³/h/m, e como o Aqüífero, segundo os autores op. cit., é de excelente qualidade e homogêneo,

acredita-se que problemas construtivos foram os responsáveis pela baixa vazão específica obtida em alguns dele. As outorgas emitidas consideraram as vazões e o tempo de exploração. As vazões variaram entre 6,0 e 9,0 m³/h, com bombeamentos de até 20 horas por dia.

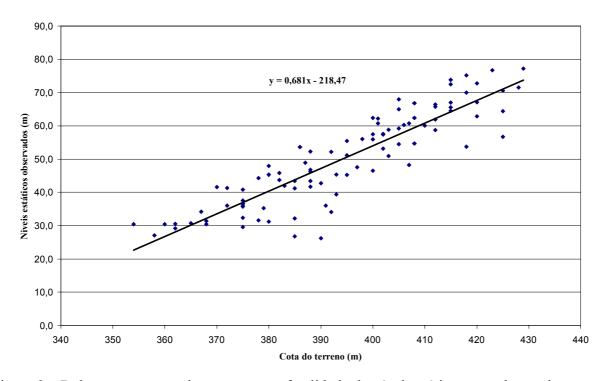


Figura 2 – Relação entre cota do terreno e profundidade do nível estático em cada um dos poços.

CONSIDERAÇÕES SOBRE O GERENCIAMENTO

Considerando-se os limites, determinados pelos trabalhos realizados tanto pelo DAEE (op cit) como por Rosa Filho (op cit) e a concentração de poços na região da Gleba XV de Novembro, pode-se afirmar que na área as interferências inter-poços, que determinam rebaixamentos residuais, estão acontecendo.

Tais limites podem levar a região da Gleba XV de Novembro a se tornar uma área de conflito de uso, em função da quantidade de poços que já foram perfurados e da demanda reprimida que ainda existe. Com o crescimento do uso do solo podem-se estabelecer projetos de irrigação, entre outros, que aumentarão a demanda de água e, consequentemente, a necessidade de perfuração de novos poços tubulares profundos.

Como potencial de produção de um poço perfurado no Aqüífero Cauiá é alto e a técnica de perfuração adequada está sendo buscada pelos perfuradores, a tendência é o aumento do número de poços perfurados, com maiores vazões de exploração. Isto intensificará os problemas de rebaixamento, provocando aumento dos custos de operação e a necessidade de um gerenciamento das vazões obtidas de cada poço. Além disto, escalonamentos dos poços bombeados podem ser necessários.

CONCLUSÕES

Considerando-se que:

1-Existem mais de 100 poços perfurados em uma área de aproximadamente 150 Km² na Gleba XV de Novembro no Pontal do Paranapanema; 2-O potencial de produção dos poços perfurados neste Aqüífero é maior do que aquele que está sendo explorado; 3-Mesmo com a exploração de vazões abaixo do potencial dos poços, a bibliografia estudada indica que já pode estar havendo interferência inter-poços e 4-Que não há como se negar o direito à água

Conclui-se que:

1-Deverão ser particularizados estudos que definam melhor os parâmetros hidrodinâmicos do Aqüífero na região do Pontal do Paranapanema, mais especificamente nas áreas de assentamentos, com vistas à subsidiar os processos de outorga; 2- Será importante a criação de Associações de Usuários de Águas Subterrâneas na região para o gerenciamento sustentável da água subterrânea; 3-Para a emissão de outorgas naquela região o DAEE deverá, em acordos com as Associações de Usuários, definir cotas de uso, com estabelecimento de tempo e vazão passíveis de exploração para cada usuário, em função da disponibilidade de água no Aqüífero e da necessidade específica de cada usuário e 4- Deverão ser criados programas de estimulo ao uso racional da água, com instalação de sistemas agrícolas e pecuários que atendam à vocação de uso dos solos do Pontal.

BIBLIOGRAFIA

- ALMEIDA, M.A. de; DANTAS, A.S.L.; FERNANDES, L.A.; SAKATE, M.T.; GIMENEZ, A.F.; TEIXEIRA, A.L.; BISTRICHI, C.A.; ALMEIDA, F.F.M. de (1981) Considerações sobre a estratigrafia do Grupo Bauru na região do Pontal do Paranapanema no Estado de São Paulo. In: SIMPÓSIO REGIONAL DE GEOLOGIA, 3, Curitiba, 1981. São Paulo, v.2, p.77-89.
- CBH-PP COMITÊ DE BACIAS HIDROGRÁFICAS DO PONTAL DO PARANAPANEMA (2001) Plano de Bacia Hidrográfica do Pontal do Paranapanema Cooperativa de Serviços, Pesquisas Tecnológicas e Industriais CPTI, 3 v. CD Presidente Prudente.
- ROSA FILHO, E. F. da (1982) Uma análise sobre a produtividade dos poços tubulares no Aqüífero Caiuá Região Nordeste do Estado do Paraná Dissertação de Mestrado Universidade Federal de Pernambuco Recife.
- SALAMUNI, R.; LANDIM, P. M. B.; SLONGO, T. T.; SOBREIRO NETO, A. F.; PAIVA FILHO, A. (1981) Observações sobre o ambiente de deposição da Formação Caiuá no Noroeste do Estado do Paraná. In: SIMPOSIO REGIONAL DE GEOLOGIA, 3, Curitiba, 1981. *Atas...* São Paulo, SBG. v.2, p. 41-65
- SÃO PAULO DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA DO ESTADO DE SÃO PAULO DAEE. (1979) Estudo de águas subterrâneas, Regiões 10 e 11, Presidente Prudente e Marília, 3v. [Atlas]