RECARGA DE ÁGUA SUBTERRÂNEA NA ILHA DO MARANHÃO E A DEMANDA NECESSÁRIA - 2010 a 2040

Raimundo Nonato Medeiros da Silva¹; Lenimar Veiga Gomes²; Maria de Nazareth dos Santos Silva³: João José Azevedo⁴

RESUMO

A ilha do Maranhão possui quatro municípios que são: Raposa, São José de Ribamar, Paço do Lumiar e a capital do Estado, São Luís. O crescimento populacional da ilha, a expansão imobiliária e a industrialização são fatores determinantes no estudo de potencialidade de água.

Hoje os mananciais de abastecimento são insuficientes e boa parte da água vem do continente.

O estudo pretende fazer um diagnóstico da oferta e demanda da água por um período de 30 (trinta) anos na Ilha, avaliando a capacidade de fornecimento sustentável da água subterrânea para os vários usos, examinando a situação atual e seus limites máximos exploráveis.

Pesquisas realizadas por diversas entidades constataram que os sistemas produtores de água, suas respectivas fontes e as vazões exploradas de água para consumo doméstico poderão ser comprometidas quanto à qualidade, devido à exploração exagerada dos seus aquíferos subterrâneos.

ABSTRACT

Ilha do Maranhão has four municipalities that are: Raposa, São José de Ribamar, Paço do Lumiar and the State capital, São Luís. The island's population growth, the real estate expansion and industrialization are determining factors in the study of water capability. Today manantiales supply are insufficient and much of the water comes from the continent.

The study aims to make the diagnosis of supply and demand of water for a period of thirty (30) years on the island, evaluating the ability to supply sustainable groundwater for various uses, examining the current situation and their ceilings exploitable.

Research conducted by various entities found that producers of water systems, their sources and water runoff operated for private consumption could be compromised in quality due to overexploitation of their aquifer.

PALAVRAS CHAVES

Recursos Hídricos, Potencial Hídrico, Saneamento Ambiental.

¹ Engenheiro Civil da Companhia de Saneamento Ambiental do Maranhão – nonaton@elo.com.br

² Química Industrial da Companhia de Saneamento Ambiental do Maranhão

³ Farmacêutica Bioquímica da Companhia de Saneamento Ambiental do Maranhão

⁴ Engenheiro Civil da Companhia de Saneamento Ambiental do Maranhão

1 - INTRODUÇÃO

O potencial hídrico do Estado do Maranhão é grande devido à influência da Amazônia Oriental, que oferece grande contribuição em umidade para a atmosfera favorecendo a formação das nuvens elevando os índices pluviométricos.

A insuficiência de reservas superficiais de água do Estado o faz possuir excessiva exploração das águas subterrâneas tendo a sua principal fonte de abastecimento no rio Itapecuru situado no continente para suprir a demanda de água potável.

O sistema aquífero Barreiras ocorre comumente como aquífero livre e tem grande participação no abastecimento de várias capitais brasileiras, particularmente nas litorâneas nordestinas. Ele abastece a cidade de São Luís conjuntamente com o sistema Itapecuru.

Figura 1 – Imagem de satélite da ilha do Maranhão

A ilha do Maranhão dispõe de importantes bacias hidrográficas. Seus rios estão em acelerado processo de degradação ambiental, com poluição por esgotos e lixo doméstico, notadamente em face da rápida expansão urbana sem o planejamento necessário, além de dejetos industriais.

2 – OBJETIVOS

A preocupação com o equilíbrio entre o uso de água doce e a capacidade de fornecimento pelos atuais sistemas da ilha de São Luís, despertou o interesse pela realização deste trabalho, para:

- 1. Estudar o limite de exploração das águas nos mananciais subterrâneos da ilha.
- 2. Comparar a retirada de água dos poços da ilha com a recarga pluviométrica do aqüífero.

3 - MATERIAIS E MÉTODOS

Os procedimentos metodológicos básicos para um estudo do problema são: levantamento e analise de material bibliográfico e da documentação cartográfica relacionada com o tema área-objeto de estudo.

A investigação bibliográfica foi orientada, inicialmente para a seleção das publicações de conteúdo básico e específico relacionada com o tema da área.

Uma pesquisa junto a CAEMA foi realizada para obter as informações de seus sistemas produtores de água, suas respectivas fontes e as vazões exploradas. Do mesmo modo junto às prefeituras de São Luís, Paço do Lumiar, São José de Ribamar e Raposa.

Para efeito de cálculo de demanda de água potável para consumo doméstico, adotou-se o consumo per capta de 200 l/s, baseado nas recomendações dos programas governamentais para o financiamento de projetos.

Tabela 1 – Estimativa populacional dos municípios da ilha

ANO	São Luís	São José de Ribamar	Paço do Lumiar	Raposa	TOTAL
2007	957.899	129.745	98.182	24.201	1.210.027
2008	977.499	134.609	101.070	25.019	1.238.197
2009	997.098	139.473	103.958	25.837	1.266.366
2010	1.017.140	144.508	106.931	26.682	1.295.261
2020	1.241.104	206.020	141.765	36.809	1.625.698
2030	1.514.382	293.714	187.947	50.781	2.046.824
2040	1.847.834	418.738	249.172	70.055	2.585.800

Fonte: IBGE

Os critérios e parâmetros adotados pela CAEMA no projeto de ampliação e duplicação do Italuís (ESSE 1998), para o cálculo dos volumes de águas para consumo doméstico e perdas não foram seguidos.

Figura 2 – Poço da CAEMA no Parque Estadual do Bacanga

No estudo a população a ser atendida em 2010 seria de 1.046.938 habitantes, com vazão de água necessária calculada de 314.081,40 m³/h. Para o mesmo estudo em 2020 a população será de 1.127.832 habitantes, e a vazão de água necessária será de 338.349,60 m³/h.

Cabe o comentário que a população estimada no estudo se aproximou em 2010 da real, e o volume de água necessário do estudo é superior ao calculado neste, devido a metodologia ser diferente.

Adotamos o modelo simplificado de calculo, ou seja, multiplicação da população pelo per capta (200 litros habitante dia), encontramos a necessidade diária do consumo doméstico de água.

Tabela 2 – Estimativa de volume de água diário necessário para abastecimento público da ilha

Ano	População total da ilha	Percapta (m³/dia)	Volume Necessário (m³/dia)	Volume Anual (m³)
2010	1.295.261	0,2	259.052	94.554.053
2020	1.625.698	0,2	325.140	118.675.954
2030	2.046.824	0,2	409.365	149.418.152
2040	2.585.800	0,2	517.160	188.763.400

Fonte: Caema

Para calcularmos a área de infiltração e o percentual infiltrado, buscamos na literatura os parâmetros de referência adotados. Consideraram-se apenas cinqüenta por cento (50%) da área total da ilha (SOUSA 1998) como possível de infiltração que totalizou em 726.550.000,00 m².

Tabela 3 – Cálculo da área territorial de infiltração na ilha

Indicadores	Unidade	Valor
Área total da ilha	Km²	1.453,10
Taxa de infiltração	%	30
Área considerada 50 %	km	726,55
Área calculada 50%	m²	726.550.000,00

Fonte: Sousa

Tabela 4 – Precipitação pluviométrica em São Luís

Meses	Precipitação	
	(mm)	
Jan	195	
Fev	325	
Mar	435	
Abr	385	
Mai	300	
Jun	130	
Jul	120	
Ago	50	
Set	15	
Out	5	
Nov	25	
Dez	75	
Anual	2.060,00	

Fonte: ESSE

Com a área de infiltração pluviométrica e a precipitação ocorrente na ilha de 2.060 mm ou 2,06 m, podemos estimar os volumes armazenados no subsolo anualmente. Mesmo que o nível de precisão não seja ideal, o valor encontrado nos dá uma idéia do que ocorre com a água doce que extraímos do subsolo nos limites territoriais da ilha do Maranhão.

Para o dimensionamento da recarga adotamos a precipitação pluviométrica sobre a ilha e consideramos que trinta por cento (30%) da pluviosidade infiltra no subsolo (SOUSA 2000).

Tabela 5 – Simulação de recarga pluviométrica na ilha

		Infiltração	
Situação	Pluviosidade (m)	(m^3/m^2)	Total (m³)
Recarga - 1	1,60	0,48	348.744.000,00
Recarga - 2	2,06	0,62	449.007.900,00
Recarga - 3	2,00	0,60	435.930.000,00

Fonte: Autor

O calculo dos volumes de água extraído de poços existentes na ilha apresenta também imprecisão, haja vista que somente a CAEMA, possui dados mensais de conhecimento público,

embora VALE e ALUMAR possuam controles, mas o acesso aos dados é difícil. Adotamos estudos publicados e estimamos os poços utilizados por particulares.

Uma parte da ilha de São Luís é abastecida, por um sistema de poços profundos, e por água superficial do Sistema de Sacavém, oriundos da própria ilha. Complementando o abastecimento com a transposição de bacia hidrográfica pelo Sistema Italuís, todos de responsabilidade da CAEMA.

A outra parte da ilha o abastecimento público é atendido pelas prefeituras de São Luís, Raposa, Paço do Lumiar e São José de Ribamar. São poços perfurados para atender as comunidades que vão surgindo ao longo de tempo.

Tabela 4 – Produção de água subterrânea da CAEMA em fevereiro 2010

CAEMA	Vazão m³/h
Sacavém	801,97
Paciência I e II	1.326,93
Maiobão	505,00
Cidade Operária -R14/R15	450,78
Sistemas Isolados	4.903,55
São José de Ribamar	448,60
TOTAL	8.436,83

Fonte: Caema

O sistema de abastecimento de São Luís é composto por água superficial e subterrânea, sendo atualmente o único superficial o subsistema do Itapecuru. O subsistema do Sacavém é composto por água superficial e subterrânea e Paciência e os Poços isolados com água subterrânea. O sistema Italuís é responsável por 60% do abastecimento e opera a vazões de 1.650 a 2.000 l/s em média.

O Sistema de Paciência é constituído por 16 poços, com capacidade total de 1.326 m³/h. O Sistema de produção do Sacavém é constituído por 15 poços, com vazão total de 802 m³/h e a água de origem superficial com vazão 640 m³/h.

Tabela 5 – Produção de água superficial da CAEMA em fevereiro 2010

Sistemas	Vazão média (m³/h)
Italuis	5.100,29
Sacavém	640,00

Fonte: Caema

O sistema do Maiobão é composto de água de poços com vazão de 505 m³/h. Do mesmo modo o sistema de abastecimento Cidade Operária composto com poços com uma vazão de 450

m³/h. São Jose de Ribamar é composto de água de poços com vazão de 448 m³/h. O restante é suprido por poços isolados que juntos podem atingir a vazão de 4.903 m³/h.

Os outros usuários de águas subterrâneas são as indústrias. A vazão necessária de água para atendimento às indústrias pode ser calculada multiplicando a área física reservada para essa finalidade multiplicada por um fator de consumo adotado em outros distritos industriais. Este método não foi adotado.

As indústrias assentados na região geográfica da ilha que são outorgadas pela autoridade estadual foram estimadas, conforme tabela 6. O volume encontrado é aproximadamente 10% do valor adotado do estudo da empresa ESSE.

Tabela 6 – Produção de água estimada utilizadas na indústria

Industrias	Vazão m³/h
Alumar	400,00
Brhama	400,00
Vale	660,00
Coca Cola	80,00
Indaiá e outras	180,00
Outros	500,00
TOTAL	2.220,00

Fonte: Autor

Fazendo um resumo da água extraída do subsolo da ilha por todos os usuários que conhecemos, podemos avaliar como 30.000 m³/h, a vazão horária retirada.

Tabela 7 – Extração de água estimada retirada em poços na ilha

Extração de Água	Vazão m³/h
Industrias	2.220,00
Caema	8.436,83
Particulares	13.000,00
Prefeitura de Raposa	680,00
Prefeitura de Paço do Lumiar	1.100,00
Prefeitura de São José de Ribamar	1.850,00
Prefeitura de São Luís	2.050,00
Total geral	29.336,83

Fonte: Autor

Transformado a vazão total de todos os usuários (tabela 7) em volume anual (tabela 8) para finalmente comparamos com um dos volumes infiltrado anualmente (tabela 5).

Tabela 8 – Extração de água anual retirada na ilha

Volumes	m³
Volume diário	586.736,60
Volume mensal	17.602.098,00
Volume anual	211.225.176,00

Fonte: Autor

4 - RESULTADOS

Na simulação final de demanda com os diversos usos de água na ilha do Maranhão, foi adotando um per capta de 200 litros dia para o consumo humano e 50 litros para criação de animais. A necessidade da indústria foi calculada com base na tabela 6 e irrigação foram adotados 1000 litros anuais por metro quadrado.

Tabela 9 – Simulação de demanda de água anual na ilha

	Unidade	2.010	2.020	2.030	2.040
População	habitantes	1.295.261	1.625.698	2.046.824	2.585.800
Pecaptas	litros hab/dia	200	200	200	200
Animais	und	6.000	5.500	5.000	4.500
Irrigação	m²	410.000	400.000	390.000	380.000
Indústrias	litros	17.760.000	26.640.000	31.968.000	35.164.800
Demanda População	litros hab/dia	259.052.200	325.139.600	409.364.800	517.160.000
Demanda Animais	litros	300.000	275.000	250.000	225.000
Demanda Irrigação	litros	410.000.000	400.000.000	390.000.000	380.000.000
Demanda total	litros /dia	687.112.200	752.054.600	831.582.800	932.549.800
Demanda diária	(m³/dia)	687.112	752.055	831.583	932.550
Demanda anual	(m³/ano)	250.795.953	274.499.929	303.527.722	340.380.677

Fonte: Autor

A parcela das águas provenientes das precipitações que per cola pelas formações geológicas reabastece os aqüíferos é o que denominamos de recarga natural. A infiltração da água através da superfície do solo é armazenada nos aqüíferos até seu retorno à superfície por ação do fluxo natural.

Tabela 10 – Comparação da recarga, água extraída e demanda

ĺ	Recarga	Extraída	Demanda 2010	Demanda 2020	Demanda 2030	Demanda 2040
	(m³/ano)	(m³/ano)	(m³/ano)	(m³/ano)	(m³/ano)	(m³/ano)
	449.007.900	211.225.176	250.795.953	274.499.929	303.527.722	340.380.667

Fonte: Autor

5 - CONCLUSÃO

Examinando os valores da tabela 10, todos na unidade m³/ano, encontrados nas simulações de recarga pluviométrica anual e a demanda necessária para o ano em curso e demais do estudo, verificam-se uma aproximação do volume da recarga do volume das demandas futuras. Sabendo que as recargas são decrescentes e as demandas crescentes, podemos avaliar com preocupante.

O volume anual extraído do subsolo da ilha através de poços é da ordem de 211.225.176 m³, enquanto que o infiltra após as chuvas é da ordem de 449.007.900 m³. Hoje ainda é favorável a exploração, porém já estamos próximos do limite. Ultrapassamos 47% de utilização da água recarregada durante o ano, assim podemos já esta criando condições para salinização dos poços.

A sustentabilidade ao longo do tempo mostra que a disponibilidade hídrica da ilha para horizonte de 30 anos está comprometida.

Recomendamos que se faça um estudo científico para localização das principais áreas de recarga da ilha para que estes locais sejam protegidos por lei, da urbanização que sela a camada superficial, impedindo a recarga natural.

6 - REFERÊNCIAS

SOUSA, Sérgio Barreto. **Estimativa da recarga natural na ilha do Maranhão**. Pesquisa em Foco, v 8 nº 12 Universidade Estadual do Maranhão. São Luís 2000.

SOUSA, Sérgio Barreto. **Sustentabilidade hídrica da ilha do Maranhão**. Pesquisa em Foco, v 6 nº 7 Universidade Estadual do Maranhão. São Luís 1998.

ESSE Engenharia. **Programa de Saneamento Ambiental de São Luís** – EIA do Sistema de Esgotamento Sanitário, CAEMA São Luís/MA. 1998.