XV CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS

ANÁLISE DE METAIS DISSOLVIDOS EM ÁGUAS: UMA COMPARAÇÃO ENTRE FILTRAÇÃO EM CAMPO X FILTRAÇÃO EM LABORATÓRIO

Cristina Gonçalves 1; Patrícia Silvério 2; Carlos Renato Yamamoto 3 & Gabriela Arantes 4

RESUMO

Neste trabalho, realizaram-se duas campanhas amostrais (março e outubro de 2007), em vinte poços de monitoramento para avaliação da qualidade das águas subterrâneas em uma área no interior de São Paulo. Foram determinados dezoito metais e semi-metais: Al, Sb, As, Ba, B, Cd, Co, Cu, Cr, Fe, Mn, Mo, Ni, Ag, Se, V, Zn e Hg, empregando as técnicas de ICP-OES (SW 846 US EPA 6010C) e CV AAS (SW 846 US EPA 7470A, para Hg). As amostras foram coletadas em duplicata, sendo que uma réplica foi filtrada em campo, com equipamento manual e filtro de 0,45μm e a segunda alíquota no laboratório, em um período de até 24 horas da realização da coleta, utilizando filtração a vácuo com membrana de celulose (0,45μm). Os desvios-padrão relativos permitiram acessar a precisão dos resultados entre as formas de filtração, não ultrapassando 20%, para a maioria dos elementos.

A realização deste trabalho permitiu verificar que é possível a realização da filtração em laboratório quando o objetivo do trabalho é avaliação da qualidade das águas subterrâneas em relação a metais e semi-metais dissolvidos, contanto que a filtração e preservação em laboratório ocorram em até 24 horas da realização da coleta das amostras.

ABSTRACT

In this work, two sampling campaigns (March and October 2007) were carried out in twenty monitoring wells in order to access groundwater quality in a site located in São Paulo State. Eighteen metals and semi-metals were analyzed: Al, Sb, As, Ba, B, Cd, Co, Cu, Cr, Fe, Mn Mo, Ni, Ag, Se, V, Zn and Hg, employing the following techniques: ICP-OES (SW 846 U.S. EPA 6010C) and CV AAS (SW 846 U.S. EPA 7470A, for mercury). The samples were collected in duplicate, being one replicate filtered on the field, using manual equipment and 0.45um filter, and the second

¹ Consultoria Paulista de Estudos Ambientais: Rua Henrique Monteiro, 90 – 13°. andar , Tel: 40823200, Fax: 3819-2815, e-mail: cristina.goncalves@cpeanet

² Consultoria Paulista de Estudos Ambientais: Rua Henrique Monteiro, 90 – 13°. andar , Tel: 40823200, Fax: 3819-2815, e-mail: patrícia.silverio@cpeanet.com

³ Corplab Brasil: Rua Galatéa, 1824, Tel: 2221-0127, e-mail: cyamamoto@corplab.net

⁴ Consultoria Paulista de Estudos Ambientais: Rua Henrique Monteiro, 90 – 13°. andar , Tel: 40823200, Fax: 3819-2815, e-mail: gabriela.arantes@cpeanet.com

one at the laboratory $(0.45\mu m)$, up to 24 hours from sampling, using vacuum and cellulose membrane. Standard deviations allowed to access bias between the forms of filtration, ranging from 0 to 20%, for most elements. The completion of this work has shown that it is possible to achieve filtration in the laboratory when the purpose of the work is groundwater quality assessment regarding dissolved metals and semi-metal, once the filtration happens within 24hours.

Palavras-Chave – metais dissolvidos, filtração, laboratório.

INTRODUÇÃO

Metais e semi-metais são importantes parâmetros na avaliação da qualidade de águas subterrâneas. A técnica de amostragem utilizada na coleta é fundamental para que não se alterem as características físico-químicas das águas devido à aeração, agitação ou purga rápida (superior a 1L/minuto). Estas alterações podem provocar aumento de turbidez, exposição a superfícies sorptivas (capazes de adsorver contaminantes dissolvidos), causando diluição, oxidação e outras mudanças na especiação do metal. Qualquer uma destas situações pode afetar o resultado final da amostra (Luftig, 2003).

Alguns pesquisadores defendem que a principal etapa da avaliação da concentração de metais é a amostragem, a qual deve minimizar o stress da interface do poço/ aqüífero, alcançando baixa turbidez, eliminando a necessidade de filtração (Puls e Barcelona, 1996; Luftig, 2003).

Segundo relatado por *Indiana Department of Environmental Management* (2006), a filtração tornase necessária pelo fato da técnica de amostragem ser inadequada, com poços inapropriadamente construídos/desenvolvidos, que produzem maior turbidez nas amostras. No entanto, ressalta que há casos em que o poço é adequadamente instalado e ainda assim a turbidez é alta; nestes casos, o ideal é analisar a amostra filtrada para tomadas de decisões, com base em análise de risco.

A filtração é realizada de forma a avaliar os metais dissolvidos, que compreendem íons livres, complexos inorgânicos e complexos orgânicos de baixo peso molecular. A filtração deve ser realizada o mais rápido possível para assegurar a integridade da amostra de água coletada, evitando que ocorram reações de oxiredução por exposição ao ar, tornando o metal insolúvel (US EPA,1996); ainda, a preservação ácida pode ser realizada em laboratório, com a ressalva de a amostra permanecer em seu frasco original, por pelo menos 18 horas, após ser preservada, para garantir que qualquer metal que tenha sido adsorvido nas paredes esteja em solução.

Para fins práticos, a filtração e preservação em laboratório químico seria o procedimento ideal, não somente por facilitar o trabalho de campo em áreas de restrito acesso, mas também por minimizar riscos de contaminação, assumindo que na maioria das vezes são elementos presentes em

concentrações traço. Segundo Windom e pesquisadores (1991), muitos dos dados históricos de metais já publicados estavam erroneamente mais altos devido à contaminação na amostragem.

OBJETIVO

Este trabalho tem como objetivo avaliar a possibilidade de realizar filtração de amostras de água subterrânea para metais dissolvidos em laboratório, respeitando um período de até 24 horas após a coleta, para a filtração e acidificação das amostras. Para isto, coletaram-se, em duas campanhas (período de cheia e seca) amostras em duplicata, sendo que uma réplica foi filtrada em campo e a segunda em laboratório e compararam-se os resultados obtidos entre as duplicatas.

PARTE EXPERIMENTAL

Área de estudo

Para a comparação entre as duas formas de filtração, selecionou-se uma área no interior do Estado de São Paulo.

Coleta de amostras

O procedimento de coleta e amostragem de água subterrânea dos poços de monitoramento seguiu os procedimentos estabelecidos em CETESB (2001). As águas subterrâneas foram coletadas dos poços de monitoramento com a utilização de "bailers" descartáveis.

Foram realizadas duas campanhas, em março e outubro de 2007. Foram coletadas vinte (20) amostras de água subterrânea por campanha, que foram numeradas de PM01 a PM20. As amostras foram coletadas em duplicatas, sendo a filtração e preservação com ácido nítrico de uma das réplicas realizada imediatamente no campo. As amostras filtradas e preservadas (réplica 1) e uma segunda alíquota, sem filtração e sem preservação, foram enviadas ao laboratório Corplab Brasil. A filtração e preservação desta alíquota (réplica 2) foi realizada dentro do laboratório. Os metais analisados pela técnica de ICP-OES não foram digeridos para análise, visto que o laboratório utilizou ítrio como padrão interno (US EPA, 2007). Para análise de mercúrio, procedeu-se de acordo com SW 846 7470A (US EPA, 1994).

Armazenamento e tratamento das amostras para as análises laboratoriais

As réplicas (1) foram acondicionadas em frascos de plástico descartável, para evitar contaminação, preservadas com HNO_3 (pH < 2) e mantidas em caixas térmicas com gelo (aproximadamente 4° C \pm 2° C), desde o momento da coleta até sua entrega no laboratório.

As réplicas (2) receberam o mesmo tratamento, porém foram acondicionadas no campo em frascos sem o preservante ácido.

RESULTADOS E DISCUSSÃO

Descrição dos métodos analíticos empregados

Os elementos Al, Sb, As, Ba, B, Cd, Co, Cu, Cr, Fe, Mn, Mo, Ni, Ag, Se, V, Zn e Hg nas amostras de água subterrânea foram analisados foram analisados na Corplab Brasil pelos métodos SW 846 US EPA 6010C (2007) e método SW 846 US EPA 7470 (1994), para determinação de mercúrio. As condições analíticas são apresentadas na Tabela 01. Visto que o objetivo foi a determinação de constituintes dissolvidos nas amostras de água, não foi necessário submetê-las a digestão ácida anterior a leitura no equipamento ICP-OES; no entanto, o emprego de padrão interno é exigido (US EPA, 2007). O laboratório utilizou ítrio como padrão interno.

Tabela 01. Condições dos equipamentos analíticos utilizados neste trabalho

Equipamento	Modelo	Fluxo de gás	Tempo de leitura
ICP-OES	Perkin Elmer Optima 2100DV	15 L/min	18 segundos
CV AAS	Perkin Elmer AA200/ FIAS 400		40 segundos

Os comprimentos de onda utilizados para medição são apresentados na Tabela 02. O laboratório realizou estudo de interferência interelementar para identificar os elementos interferentes nos comprimentos de onda usados.

A curva de calibração baseou-se na diluição de padrões concentrados de Hg 1000 mg/L, CLPP-CAL-1, Sb 1000 mg/L e CLPP-CAL-3 da marca Inorganic Ventures. Os pontos da curva de calibração, coeficientes de correlação (r²) e limites de quantificação obtidos são apresentados na Tabela 2.

Tabela 02. Condições para análise dos elementos investigados neste trabalho

Elementos	λ (nm)	Interferentes	Visão do plasma	Pontos da calibração (μg/L)	LQ (µg/L)	Coeficiente de correlação r ²
Alumínio	308,215	B, Ca, Cr, Mo, Sn	Radial	0; 100; 2.000; 10.000; 20.000	100	0,999876
Antimônio	206,836	Cr, Fe, Mo, Sn	Axial	0; 5; 20; 100; 500; 1.000	5	0,999878
Arsênio	188,979	Cr, Fe, Mo	Axial	0; 10; 80; 100; 500; 1.000	10	0,999586
Bário	233,527	Fe	Radial	0; 100; 2.000; 10.000; 20.000	100	0,999999
Boro	249,677	Mo	Radial	0; 200; 2.500, 5.000	200	0,999065
Cádmio	226,502	Al, B, Ca, Cr, Fe, Mo, Sn	Axial	0; 5; 40; 50; 250; 500	5	0,999566
Cobalto	228,616	Al, B, Ca, Cr, Fe, Mo, Sn	Axial	0; 5; 100; 500; 2.500; 5.000	5	0,99987
Cobre	324,752	Al, B, Ca, Cr, Fe, Sn	Axial	0; 30; 250; 1.250; 2.500	30	0,999949
Cromo	267,716	Al, Ca, Mo	Axial	0; 10; 200; 1.000; 2.000	10	0,99996
Ferro	273,955	Al, Mo	Radial	0; 300; 1.000; 5.000; 10.000	300	0,999971

Elementos	λ (nm)	Interferentes	Visão do plasma	Pontos da calibração (μg/L)	LQ (µg/L)	Coeficiente de correlação r ²
Manganês	257,61	Cr, Fe, Mo, Sn	Axial	0; 10; 500; 2.500; 5.000	10	0,999955
Molibdênio	202,031	Al, B, Ca, Cr, Sn	Axial	0; 20; 2.500; 5.000	20	0,999911
Níquel	231,604	Al, Ba, Ca, Cr, Fe, Mo, Sn	Axial	0; 10; 80; 500; 2.500; 5.000	10	0,99968
Prata	338,289	Ca, Fe, Mo	Axial	0; 10; 250; 1.250; 2.500	10	0,999986
Selênio	196,026	B, Ca, Cr, Fe, Mo, Sn	Axial	0; 10; 40; 100; 500; 1.000	10	0,999402
Vanádio	290,88	B, Fe, Mo	Axial	0; 30; 100; 500; 2.500; 5.000	30	0,999801
Zinco	206,2	B, Ca, Cr, Fe, Mo, Sn	Axial	0; 40; 100; 500; 2.500; 5.000	100	0,999954
Mercúrio*	253,7			0; 0,2; 0,5; 1,0; 2,0; 5,0; 10,0	1	0,99936

^{*} Limite de Quantificação

Com o intuito de comprovar o desempenho do laboratório na determinação de metais, foi analisada uma amostra de água de referência, fornecida pela RTC, empresa acreditada nos Estados Unidos pelo Programa NELAP (*National Environmental Laboratory Accreditation Program*).

RESULTADOS OBTIDOS

Os resultados obtidos na determinação dos metais nas amostras de água subterrâneas filtradas em campo e em laboratório são apresentados na Tabela 03.

Com o intuito de acessar a precisão dos resultados, mediu-se a dispersão dos dados entre as duplicatas a partir do desvio-padrão relativo (DPR) entre as medidas da amostra filtrada e preservada em campo (A1) e da amostra filtrada e preservada em laboratório (A2), utilizando-se a equação abaixo:

$$\%DPR = \frac{100\% \times (A1 - A2)}{(A1 + A2)/2}$$

De acordo com o método 6010C (US EPA, 2007), o DPR entre duplicatas não deve ser superior a 20% para ser considerado aceitável.

Como pode ser observado na Tabela 03, os resultados estiveram, na maioria dos casos, inferior a 20% de desvio-padrão relativo entre as duplicatas, exceto alumínio na amostra PM01 (DPR de 24%), chumbo na amostra PM04 (DPR de 22%), vanádio na amostra PM09 (DPR de 22%) e cobalto na amostra PM18 (DPR de 18%). No entanto, de acordo com o documento *Contract Laboratory Program – National Functional Guidelines for Inorganic Data Review* (US EPA, 2004), um valor menos restritivo de 35% é aceitável para concentrações até cinco vezes o limite de

quantificação. Desta forma, os resultados obtidos entre as duplicatas são aceitáveis, indicando boa precisão entre os resultados das duas formas de filtração.

As amostras em duplicata deste estudo sofreram tratamentos diferentes, a réplica (A1) foi filtrada e acidificada em campo e a réplica (A2) foi filtrada e acidificada em laboratório. Portanto, caso estes procedimentos (tratamentos diferentes) ocasionassem diferenças significativas nos resultados, a precisão não seria atendida, dentro da variação aceitável (20%, para concentrações acima de 5 vezes o limite de quantificação –LQ - e 35% para concentrações até 5 vezes o LQ).

É válido ressaltar que a análise em duplicata não permite acesso a exatidão, ou seja, saber se o valor medido encontra-se próximo ao real; esta informação é obtida a partir de amostras de referência. Para a avaliação da exatidão foi analisada uma amostra de água de referência da empresa RTC. A Tabela 4 apresenta os resultados desta análise.

Tabela 3. Resultados obtidos nas amostras de água subterrânea analisadas neste trabalho

Elementos.	Meses de	PM	- 01		PM	- 02		PM	- 03		PM	- 04		PM	- 05	
em ug/L	2007	A1	A2	DPR	A1	A2	DPR	A1	A2	DPR	A1	A2	DPR	A1	A2	DPR
	Março	180	150	18	<100	<100	0	200	200	0	<100	<100	0	330	330	0
Alumínio	Outubro	469	370	24	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0
	Março	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
Antimônio	Outubro	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Arsênio	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	150	150	0	110	110	0	160	160	0	120	120	0	145	145	0
Bário	Outubro	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0
	Março	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0
Boro	Outubro	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0
	Março	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
Cádmio	Outubro	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	42,2	33,8	22	<10	<10	0
Chumbo	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
Cobalto	Outubro	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
	Março	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
Cobre	Outubro	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Cromo	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<300	<300	0	<300	<300	0	<300	<300	0	<300	<300	0	<300	<300	0
Ferro	Outubro	<300	<300	0	<300	<300	0	479	400	18	<300	<300	0	<300	<300	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Manganês	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Molibdê-	Março	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0
nio	Outubro	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Níquel	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Prata	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Selênio	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<30	<30	0	<30	<30	0	<30	<30	0	21,2*J	17,0*J	22	<30	<30	0
Vanádio	Outubro	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0

Elementos,	Meses de	PM	- 01		PM	- 02		PM	- 03		PM	- 04		PM	- 05	
em ug/L	2007	A1	A2	DPR												
	Março	<100	<100	0	110	110	0	130	130	0	<100	<100	0	140	140	0
Zinco	Outubro	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0
	Março	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0
Mercúrio	Outubro	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0

Tabela 3 (Continuação) . Resultados obtidos nas amostras de água subterrânea analisadas neste trabalho

Elementos,	Meses de	PM	- 11		PM	- 12		PM	- 13		PM	- 14		PM	- 15	
em ug/L	2007	A1	A2	DPR												
	Março	180	180	0	<100	<100	0	<100	<100	0	140	140	0	200	200	0
Alumínio	Outubro	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0
	Março	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
Antimônio	Outubro	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Arsênio	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	350	350	0	340	340	0	540	540	0	840	840	0	470	470	0
Bário	Outubro	153	132	15	320	316	1,3	378	397	4,9	798	887	11	211	175	19
	Março	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0
Boro	Outubro	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0
	Março	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
Cádmio	Outubro	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Chumbo	Outubro	<10	<10	0	12	14	15	21,6	23,2	7,1	<10	<10	0	<10	<10	0
	Março	<5	<5	0	<5	<5	0	<5	<5	0	36,8	35,8	2,8	<5	<5	0
Cobalto	Outubro	<5	<5	0	<5	<5	0	<5	<5	0	57,5	59,4	3,3	<5	<5	0
	Março	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
Cobre	Outubro	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Cromo	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	2687	2370	13	<300	<300	0	<300	<300	0	592	530	11	<300	<300	0
Ferro	Outubro	<300	<300	0	839	839	0	<300	<300	0	2416	2304	5	<300	<300	0
	Março	88,2	81,5	8	31,7	27,5	14	35	35	0	730	730	0	117	115	1,7
Manganês	Outubro	32,5	31,6	3	141	146	3,5	52,7	44,7	16	1055	1099	4,1	35,5	31,7	11
Molibdê-	Março	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0
nio	Outubro	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Níquel	Outubro	<10	<10	0	<10	<10	0	20,1	18	11	30	30	0	<10	<10	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Prata	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Selênio	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
Vanádio	Outubro	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
	Março	150	150	0	170	170	0	185	185	0	300	300	0	170	170	0
Zinco	Outubro	<100	<100	0	<100	<100	0	<100	<100	0	313	317	1,3	<100	<100	0
	Março	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0
Mercúrio	Outubro	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0

Tabela 3 (Continuação) . Resultados obtidos nas amostras de água subterrânea analisadas neste trabalho

Elementos,	Meses de	PM	- 16		PM	- 17		PM	- 18		PM	- 19		PM	- 20	
em ug/L	2007	A1	A2	DPR	A1	A2	DPR	A1	A2	DPR	A1	A2	DPR	A1	A2	DPR
	Março	<100	<100	0	<100	<100	0	<100	<100	0	<u>931</u>	<u>898</u>	3,6	<100	<100	0
Alumínio	Outubro	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0
	Março	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
Antimônio	Outubro	<5	<5	0	<5	<5	0	<5	<5,00	0	<5	<5	0	<5	<5	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Arsênio	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	215	215	0	960	960	0	1200	1200	0	260	260	0	260	260	0
Bário	Outubro	114	113	0,9	591	627	5,9	1490	1443	3,2	157	176	11	144	120	18
	Março	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0
Boro	Outubro	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0	<200	<200	0
	Março	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
Cádmio	Outubro	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0	<5	<5	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Chumbo	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<5	<5	0	<5	<5	0	32,9	25,6	25	16,3	15	8,3	<5	<5	0
Cobalto	Outubro	<5	<5	0	<5	<5	0	120	124	3,3	<5	<5	0	<5	<5	0
	Março	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
Cobre	Outubro	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Cromo	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<300	<300	0	4649	4242	9,2	<300	<300	0	3220	2900	10	26636	25781	3,3
Ferro	Outubro	<300	<300	0	2988	3456	15	<300	<300	0	1018	1159	13	24142	23100	4,4
	Março	<10	<10	0	230	230	0	19761	20457	3,5	1658	1335	22	340	340	0
Manganês	Outubro	<10	<10	0	107	92,7	14	32748	30444	7,3	806	807	0,1	288	269	6,8
Molibdê-	Março	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0
nio	Outubro	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0	<20	<20	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Níquel	Outubro	<10	<10	0	<10	<10	0	<10	<10,0	0	<10	<10	0	<10	<10	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Prata	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
Selênio	Outubro	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0	<10	<10	0
	Março	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
Vanádio	Outubro	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0	<30	<30	0
	Março	140	140	0	240	240	0	130	130	0	120	120	0	120	120	0
Zinco	Outubro	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0	<100	<100	0
	Março	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0
Mercúrio	Outubro	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0	<1	<1	0

Tabela 4. Resultados da amostra de água de referência da RTC

Elementos	Resultados (µg/L)	Intervalo de aceitação
Alumínio	857,0	720 a 1070
Antimônio	192,0	155 a 283
Arsênio	74,6	64,1 a 98,5
Bário	433,4	406 a 528
Boro	1388	1100 a 1560
Cádmio	95,3	77,6 a 106

Elementos	Resultados (µg/L)	Intervalo de aceitação
Cobalto	200,8	169 a 218
Cobre	152,1	136 a 171
Cromo	91,8	87,5 a 118
Ferro	196,6	176 a 236
Manganês	112,9	96,7 a 124
Molibdênio	80,5	72,3 a 110
Níquel	255,7	243 a 310
Prata	475,1	402 a 536
Selênio	89,4	69,2 a 108
Vanádio	421,3	402 a 514
Zinco	91,2	85,4 a 123
Mercúrio*	24,8	13,8 a 30,3

Como pode ser observado na Tabela 4, os resultados da análise da amostra de referência validaram a exatidão analítica, uma vez que encontram-se dentro da faixa de aceitação para todos os elementos analisados.

CONCLUSÕES

Os resultados das análises das amostras (réplicas A1 e A2) mostraram-se dentro da faixa aceitável para comprovar a precisão entre duplicatas.

A exatidão das análises químicas foi comprovada por meio da análise de amostra de referência, validando os resultados analíticos.

A partir dos resultados deste trabalho, pode-se concluir que a fidedignidade dos resultados de metais dissolvidos é assegurada, caso a filtração e acidificação ocorra em até 24 horas após a coleta. A viabilidade de filtração em laboratório, além de facilitar a operação de campo, reduz a possibilidade de contaminação cruzada, visto que o laboratório dispõe de artefatos necessários para que a filtração ocorra em um ambiente isento de contaminantes.

REFERÊNCIAS BIBLIOGRÁFICAS

- CETESB Companhia de Tecnologia e saneamento básico, 2001. Manual de Gerenciamento de Áreas Contaminadas, Projeto CETESB GTZ, cap. 6400 Amostragem e Monitoramento de Águas Subterrâneas, 36p.
- IDEM Indiana Department of Environmental Management, 2006. http://www.in.gov/idem/4806.htm, acessado em 14 de Junho de 2008.
- Luftig, S.D. 2003. Draft Guidance, National Guidance on Field Filtration of Ground Water Samples from Monitoring Wells for Superfund Site Assessment USEPA.
- Puls, R. W. and M. J. Barcelona, 1996. Low-Flow (Minimal Drawdown) Ground Water-Water Sampling Procedures EPA/540/S-95/504.

- US EPA, 2007. Method 6010C Inductively Coupled Plasma Atomic Emission Spectrometry; http://www.epa.gov/epaoswer/hazwaste/test/6_series.htm, acessado em 18 de Maio de 2008.
- US EPA, 2004. USEPA Contract laboratory Program National Functional Guidelines for Inorganic Data Review. Office of Superfund Remediation and Technology Innovation (OSRTI) OSWER 9240.1-45, EPA/540/R-04/004.
- US EPA, 1996. Method 1669 Sampling ambient water for trace metals at EPA Water Quality Criteria Levels. ftp://ftp.dep.state.fl.us/pub/labs/assessment/guidance/1669.pdf, acessado em 18 de Maio de 2008.
- US EPA, 1994. Method 7470A Mercury in liquid waste (Manual cold-vapor technique), http://www.epa.gov/epaoswer/hazwaste/test/7_series.htm, acessado em 18 de Maio de 2008.
- WINDOM, H.L., Byrd, J.T., Smith, R.G., Jr., and Huan, F., 1991. "Inadequacy of NASQAN Data for Assessing Metal Trends in the Nation's Rivers, vol. 25, p. 1137. Environ. Sci. Technol.