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Abstract - Groundwater quality sampling networks are an aid in characterizing

groundwater contamination problems and in evaluating the performance of a remediation

strategy. In this context the goal of a water quality sampling network is to estimate the

extent and behavior of the contaminant plume. Estimating concentrations of a contaminant

plume in an efficient way depends on both the location of the sampling wells and the times

when the contaminant samples are taken. In response to this need two of the authors have

proposed a methodology for the design of cost-effective water-quality sampling in which

sampling locations and sampling times are decision variables (Herrera 1998, and Herrera

and Pinder 1998).

The proposed methodology combines stochastic simulation (also known as Monte

Carlo simulation) and a Kalman filter to obtain sampling network designs that minimize (we

explain in the text in which sense) the uncertainty of the predicted contaminant

concentration estimates. One important feature of the methodology is that the number of

samples that are taken at a given time does not have to be stipulated. Rather, the method

chooses the ”optimal” number of samples for each sampling time. In this paper we present

an application of the approach to a hypothetical problem and a blueprint for and progress

in the application of this methodology to a field problem.

Keywords - groundwater quality, sampling network design, stochastic models

1. SAMPLING NETWORK DESIGN METHODOLOGY

The groundwater-quality sampling network design methodology presented herein can

be divided into two parts: 1) a method that is used to predict the uncertainty of an estimate
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produced by data sampled at given times from a set of sampling wells; and 2) a method

that uses this predicted uncertainty to choose sampling positions and sampling times.

For the first part we use a stochastic flow and transport model to compute a space-

time contaminant-concentration estimate and its covariance matrix via stochastic

simulation. Next, a Kalman filter is used to predict the uncertainty that the concentration

estimate would exhibit if concentration data from samples taken from computed locations

at different times were used to update the prior estimate. This is similar to using a space-

time Kriging method to predict the uncertainty of an estimate, but here instead of using a

space-time variogram obtained from an analysis of concentration data, we calculate a

space-time covariance matrix from a transport model via stochastic simulation.

A function, F, of the predicted estimate uncertainty is used as a criterion to choose

sampling positions and sampling times for the network. The function used depends on the

objective of the design. For example, F could be the sum of the variance of the

concentration estimate at locations close to a drinking water well during a given year.

Different procedures, including optimization methods, can be used to select the positions

and times that minimize the function F. So far, we have used a sequential procedure that

selects the space-time sampling points that minimize the function F at each step, and

stops when F reaches a predetermined value.

In principle any node of the model mesh can be chosen as a sampling position. Thus,

if the model used is three dimensional, sampling positions at different depths can be

chosen. However, in the present tests we restrict the sampling positions to a fixed,

specified, depth.

1.1 KALMAN FILTER

The Kalman filter produces linear minimum-variance unbiased estimates for the state

of a system given noisy data. It also establishes a way to update these estimates when a

new measurement becomes available without a need to refer to old data (Jazwinski 1970).

Through stochastic-simulation tests we demonstrate that the contaminant

concentration obtained from a stochastic transport model like the one we use in this work,

has a strong time correlation that persists for long times (Herrera 1998). On the other

hand, the Kalman filter, when applied in its traditional form to space-time problems, relies

upon some assumptions that restrict the state time correlation. Thus, to be able to manage

the strong time correlation of the contaminant concentration inherent in this methodology,

we use a static Kalman filter applied to a space-time state.
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Let C={c
ijl
} be a vector of concentration values at nodes of a numerical mesh, where

c
ijl
  is the concentration at location (x

i
,y

j
) at time t

l
. Let {zn, n=1,2,...} be a sequence of

measurements of the corresponding contaminant concentrations nc ijl , where the subscript

ijl indicates the space-time location at which the n-th sample is taken. These samples are

related to the state through the linear measurement equations,

 zn=HnC+vn, (1)

where Hn  is the n-th sampling matrix. The form of the sampling matrix depends on the

relation between the data and the state. The set {vn, n=1,2,...}  represents the

measurement error. It is a white Gaussian sequence, with mean zero and covariance

matrix Rn. The measurement error sequence  {vn} and the state C are independent.

It can be shown (Jazwinski, 1970) that the minimum-variance unbiased estimate for

the state variable, given the measurements z
1
, z

2
, ...,z

n
, here denoted as nĈ , is the

expected value of the state C given the data, that is, { }
n1

n z,...,z |CEĈ = . Note that in this

notation the superscript identifies the number of measurements that are used to obtain the

estimate. The covariance matrix of the estimate error is

 where  T  denotes transpose.

Given a prior estimate of the system state, 0Ĉ , and its covariance matrix, P
0
, the

minimum-variance linear estimate for the state and its covariance matrix can be obtained
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1.2  ESTIMATION OF PRIOR MOMENTS

As was mentioned before, we use stochastic simulation to obtain the prior space-time

concentration estimate and its covariance matrix. The hydraulic conductivity parameter is

},)Ĉ-)(CĈ-E{(CP Tnnn =
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represented as a spatial-random field for the stochastic model. Consequently, the velocity

field, calculated through Darcy’s law, also becomes a random field. Given the mean

hydraulic conductivity and its variogram, conductivity realizations are obtained. The flow

equation is solved numerically using each realization. The values obtained determine a

velocity field that is, in turn, used to solve the contaminant transport equation and to

produce a realization of the plume. Averaging the plume realizations we obtain the space-

time concentration mean and its covariance matrix. We define C
0
 as the mean

concentration vector and P
0
 as the covariance matrix associated with it.  In the synthetic

problem that we present, in addition to the hydraulic conductivity, the contaminant

concentration at the contaminant source is also represented with a random variable but for

the field application only the hydraulic conductivity is modeled as a random variable.

2. EXAMPLE PROBLEM

To illustrate our approach for the design of groundwater quality sampling networks

consider the system presented in figure 1a. A contaminant source is located on the left

hand side of a 0.5 by 0.5 mile region bounded on the right-hand side by a river. We want

to design a contaminant-sampling program to estimate the contaminant concentrations of

the moving plume during a two-year period. The concentration estimates will be

associated with the nodes of what we call the Kalman filter mesh shown in figure 1a. Six

measurements and estimation times are considered during this two-year period, that is,

one every 121.7 days.

Sampling well locations and times must be selected. The criterion used to evaluate

the estimates is a function of the estimate variance but other criteria can be used.

Note that the Kalman filter mesh is playing the role of two meshes that in general

could be different, i.e. the estimation mesh and the sampling mesh. The first one would

include all the nodes on which contaminant concentration estimates are sought, and the

second one would include all the nodes that are possible sampling locations.

2.1 CONTAMINANT TRANSPORT SIMULATION

We use the steady-state flow equation and the conservative advection-dispersion transport

equation to model the problem. The stochastic simulation mesh is required for the

numerical solution of the flow and transport equations. The domain is divided into 40 X 40

equally sized elements. The stochastic simulation mesh is shown in figure 1b. Note that

the Kalman filter mesh is a submesh of the stochastic simulation mesh. Boundary

conditions for flow and transport are included in figures 1a and 1b, respectively.
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Concentrations are in parts per million (ppm)

and hydraulic heads are in meters. Forty-eight

time-steps are used to simulate the two-year

period. The contaminant source is active during

all of this period. The Princeton Transport Code

(PTC, Babu et al. 1993) is used in two-

dimensional mode to solve these equations.

The Kalman filter mesh that we have

chosen implies that there is a direct relation

between the data, z, and the state, C. Each sample taken is the observation of a

component of the state plus a random error (equation 1). For this reason, the n-th

sampling matrix, Hn, is non zero and equal to one only at the entry of C corresponding to

the position that is sampled.

2.2 HYDRAULIC CONDUCTIVITY AND SOURCE CONCENTRATION RANDOM FIELDS

We assume that the conductivity field is log-normally distributed, homogeneous,

stationary, and isotropic. The mean value of the field is 3.055 and the variogram that

represents the log-conductivity spatial correlation structure is

.
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Figure 1. a) Problem set up, Kalman filter mesh, and boundary conditions for flow (h is in meters).
b)  Stochastic simulation mesh and boundary conditions for transport.

Figure 2. An example of a realization of the
contaminant concentration at the source.
The graph show concentraion vs time for
the two year period.
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Concentration at nodes located at the source is modeled with identically distributed

independent random functions. On each node, the concentration is represented as a time

series, with

where, e(t) is a zero-mean random perturbance, normally distributed and with variance

0.195. While the variance was obtained from the analysis of a time series of field data, the

form of the exponent is hypothetical. For each one of the source nodes, at each simulation

time-step, a different random perturbation is used. In figure 2 a realization for one of the

nodes at the contaminant source is shown. The time correlation of the random

perturbations is modeled with the variogram

where eλ  is the correlation scale of ,e  and in this example =eλ 11 days.

We use a method called sequential Gaussian simulation (SGS) from the GSLIB

package (Deutsch and Journel, 1992) to obtain hydraulic conductivity and contaminant

concentration realizations.

A set of tests was done to check convergence of the method described above with

respect to the number of realizations. It was concluded that 3,000 plume realizations were

enough to obtain convergence.

2.3  SAMPLING PROGRAM

The function F used in these examples to evaluate the quality of a given estimate is

the total variance, F=tvar. The total variance of the estimate obtained when samples {z1,

z2,..., zn} are used, is defined as the sum of the estimate variances over all locations and

times. For the present example this is,

where )(2 nijlσ  is the variance of the estimate at the i,j location on the Kalman filter mesh,

and l-th estimation time. The elements )(2 nijlσ are obtained from the covariance matrix P
n
.
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One sampling location at a time is chosen, the one selected is that which reduces tvar the

most given previous sampling decisions. That is, if positions { }nxxx ,...2,1  have been chosen,

position 1+nx  is chosen in the following way:

1) Using the Kalman filter, calculate

the variance of the minimum error

variance estimate obtained from data

sampled at positions

{ },,,...2,1 in Xxxx for all possible

sampling positions iX .

2) Choose the position iX  that

minimizes the total variance.

Note that in this example we use

each new sample to estimate the

concentration in the whole two-year period considered. Then, a sample taken at a given

time contributes to estimate concentration at both past times and future times. In the

present example a sampling program with 39 samples is obtained.

The example analyzed assumes samples with no error (vn=0 in equation 1). The

sampling program chosen by the algorithm when minimizing the total variance is shown in

figure 3. The figure includes six squares that represent the Kalman filter mesh at the six

Figure 3. Sampling program for the hypothetical
problem.

Figure 4. Comparison of the observed plume and the plume estimates (logarithmic scale). The observed
plume is in white contours and the estimates are in black contours. Black dots indicate sampling
locations. a) Prior estimate. b) Plume estimate for a sampling program of  39 samples.

b)a)
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sampling times. The numbers on the mesh indicate the order in which the samples were

chosen. Number 1, for example, indicates that the first sample was chosen close to the

contaminant source, at the sixth sampling time: (x1, y4, t6). These numbers attest to the

importance of a sample from the corresponding space-time location for reducing the total

variance.

Twelve of the first twenty sampling locations are chosen close to the source. The

other eight samples are located at the two central rows of the sampling mesh, either at the

fifth or sixth times. This tendency to first select the samples close to the source is due to

the large concentration variance at those locations.

All of the twenty first samples are chosen on the third and fourth rows of the sampling

mesh, this suggests that to reduce the total variance of the concentration estimate it is

important to obtain first the central tendency of the plume. The last nineteen samples

seem to define the spreading of the plume; fourteen of them are located where the prior

plume has its boundaries. These boundaries are shown in (figure 4).

As was mentioned before, the number of samples at each sampling time is not

stipulated but is chosen by the algorithm. In figure 3 it can be seen that the number of

samples augments with time until the fifth sampling time. Thus, the sampling time that

gives the most information is t=5. It is interesting to note that this is not the time at which

the expected plume has the largest variances; this time is t=6.
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2.4 OBSERVED PLUME

To investigate the quality of the plume estimates obtained by the proposed method

we compare these estimates with a pre-selected plume from which samples are taken in

accordance with our algorithm. The "observed" plume is selected arbitrarily from the set of

realizations. In figure 4a a comparison between the observed plume and the prior estimate

is presented, and in figure 4b comparison between the observed plume and the plume

estimate obtained when the data from the sampling network proposed is used is

presented. The observed plume is shown in white contours and the estimates in black

contours. A logarithmic scale is used. As can be observed, the updated plume estimate

gets very close to the observed plume.

3. FIELD PROBLEM

The objective of this part of the work is to “validate” the methodology described

above by applying it to a field site. What follows outlines our progress to date.

To apply our approach, and to assess its effectiveness, we require a site at which the

following are available:

• Hydraulic conductivity data

• Groundwater quality data gathered over a long period

Figure 5. Study area site map. Taken from the report Ciba 1999.
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• A flow- and contaminant-transport model calibrated for the site

We need enough hydraulic conductivity data to do a geostatistical analysis and to

estimate the hydraulic conductivity mean and variogram. Groundwater quality data is

needed to compare the estimate obtained with the currently available data with the one

obtained from the sampling network selected by our methodology. Finally, a flow and

transport model is needed for the stochastic simulation. We have chosen the aquifer

underlying a superfund site in New Jersey to test the methodology because it satisfies

these three requirements, and we have access to the data and a site model (see figure 5).

The information about the site presented in this paper was taken from the report Ciba

1999.

3.1  DATABASE

A number of remedial investigations have been conducted at the site (Aware 1986,

NUS Corporation Superfund Division 1988, CDM 1989, Eckenfelder Inc. 1991,

Eckenfelder Inc. 1993, Environ Corporation 1993, Ciba 1999. As a result a database of

several parameters has been compiled. For our purposes the most important data are

those related to hydraulic conductivity, the temporal and spatial distribution of groundwater

head, and water quality. Data related to soil are also important because they are used to

characterize source areas for the transport model.

Data from 641 wells at the site are available. Most of the groundwater quality data

were obtained from 1982 to date, and for some compounds data are available since the

1950s. For chlorobenzene there are 5723 measurements gathered from 1982 to 1999.

3.2 SITE HYDROLOGY AND GROUNDWATER QUALITY

The site is located in the New Jersey Coastal Plain. Within the upper 200 feet

beneath the site there are nine recognized geologic members comprised of

unconsolidated sands, silts, and clays. In descending order these are:

1.  Upper Cohansey Member

2.  Cohansey Yellow Clay Member

4.  Cohansey/Kirkwood Transitional Member

5.  Lower Cohansey Member

6.  Upper Kirkwood Member
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7.  Kirkwood No. 1 Member

8.  Semi-Confining Unit (Primary Kirkwood)

9. Lower Sand Aquifer (Kirkwood No. 2 Sand)

Dissolved contaminants have leached from the source areas into portions of the

upper five geologic units (i.e., the Primary and Lower Cohansey Members). Units below

the Lower Cohansey are uncontaminated.

The aquifer can be divided into two hydrostratigraphic units: the Upper Sand Aquifer

and the Lower Sand Aquifer. The Semi-Confining Unit separates these two subdivisions.

In figure 6 a simplified view of the Upper Sand Aquifer in cross-section is shown. The gray

units are conceptualized as aquitards and the white units as transmissive water bearing

units.

The focus of our work is the Primary Cohansey aquifer. Groundwater flow within this

aquifer is principally horizontal and it is hydraulically connected with the Toms River. Of

the suite of chemicals present in the groundwater, chlorobenzene is the most ubiquitous.

For this reason we chose to design the sampling network for this compound.

3.3  GROUNDWATER FLOW AND TRANSPORT MODEL
 Figure 6 shows a conceptual view of the model in cross-section. The model

simulates the flow and transport properties of the Upper Sand Aquifer for the years 1953 to

Figure 6: A conceptualized cross sectional view through the model
domain. CTM stands for computational transport model. Taken from the
report  CIBA, 1999.  
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2028. The different geological units are represented with seven model layers. Because the

Primary Cohansey is relatively thick, and because it plays an important role in defining the

contaminant-transport problem, the model represents this unit as three layers. Applying

the estimated-flux values to the top layer of the model incorporates the water flux entering

the saturated zone from above.

Two different domains are used, one for a regional flow model and one for a local

flow and transport model. The domain for the regional flow model is larger than, and

contains, the local model. For the regional model, where practical, the boundary of the

model is keyed into regional surface watercourses. The regional model is solved first and

the resulting heads are used to define the boundary conditions for the local model.

As with the regional model, the local model simulates the Upper Sand Aquifer. The

lateral boundary and the mesh used in the local model domain are shown in figure 7. The

transport model includes retardation and biodegradation.

3.4  SAMPLING NETWORK DESIGN OBJECTIVES

As was mentioned earlier, in the network design we assume that all the samples are

taken at the same depth. For this reason, the sampling network will be designed for one of

the model layers. We have chosen the lower part of the Primary Cohansey aquifer, layer 3

in the model, to do the tests. Also, all the sampling wells will be in the domain of the local

Figure 7. Domain and mesh of the local model.
Figure 8. Positions of the wells (shown with a
square) for which chlorobenzene data obtained
from layer 3 during 1985 and 1986 are available.
The model domain is shown with the darkest
contour and the limit of the facility with a lightest
one.
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model because this is the area of most concern. As a first step, two simple tests will be

performed for a period of two years:

1.  optimization of the existing sampling network,

2.  design of a new sampling network.

We have chosen the years 1985 and 1986 for these tests because for those years

the largest number of chlorobenzene data are available at layer 3, a total of 322 data from

62 sampling wells. The wells that are located in the model domain are shown in figure 8.

The wells with more data are concentrated close to the southeast limit of the facility.

In the first test from the existing samples, we will choose those sampling positions

and sampling times for which we obtain a concentration estimate uncertainty equivalent to

the one obtained using all samples available. For this test it will be possible to compare the

resulting estimate from the sampling network suggested by our methodology and the one

obtained using all the data available for the two years.

The second test consists of designing a new sampling network for the years 1985

and 1986. In the design process, well positions will be chosen from the nodes of a sub-

mesh of the numerical mesh, and sampling times will be selected from the set of times

defined by a frequency of half a month. The objective again will be to obtain an estimate

with uncertainty equivalent to the uncertainty of the estimate obtained using all the data

available.

Figure 9. Hydraulic conductivity contours in
logarithmic scale. The positions of the data are
shown with a circle.

Figure 10: Comparison between the
experimental variogram and the model
variogram, the first is shown in gray and the
second in black. Distance is in feet.
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In these tests we will assume that each sampling well location coincides with a node

in the numerical mesh. Since not all the wells satisfy this assumption, we will approximate

the well positions with the position of the node that is closest to it. For this model this

assumption should not introduce much error because the mesh is dense and, in most

cases, for every element there is only one well and it is close to one of its nodes.

We have a similar situation with the chlorobenzene data sampling times: samples

were collected at different dates at each well, so it is impossible to have a simulation

output for each sampling time. For this reason,

we will get a simulation output every half a

month and we will approximate each data

sampling time with the simulation time closest

to it.

3.5 STOCHASTIC SIMULATION
In the stochastic simulation we will use

only the local model. The flow boundary

conditions for this model will be determined

from the deterministic regional model, i.e. the

regional model will be run only once with the

conductivity values assigned in the calibrated

model.

For the local model all the parameters will be deterministic with values equal to those

of the original model, with the exception of the hydraulic conductivity in layer three. For this

layer, in each model run, the hydraulic conductivity will take the values of the

corresponding realization. Each hydraulic conductivity realization will be conditioned with

data, that is, for the locations in which conductivity data are available each realization will

take the values of the data.

3.6  HYDRAULIC CONDUCTIVITY GEOSTATISTICAL ANALYSIS
A number of slug tests have been performed at the site to estimate the hydraulic

conductivity (Aware 1986, NUS Corporation Superfund Division 1988, Eckenfelder Inc.

1991, and Eckenfelder Inc. 1993). We have done a geostatistical analysis of the data

obtained from these tests for the Primary Cohansey Member. Hydraulic conductivity

contours in logarithmic scale for this member are shown in figure 9. The contours show

that a band of low conductivity values crosses the site from northwest to southeast. This

Figure 11: Chlorobenzene behavior at well 744-
150 in the Primary Cohansey. The plot shows
the trend in concentration (units of ppb) versus
time, where the solid diamonds represent a
transport model result, the squares represent an
unqualified measured value, and the crosses
represent 1/2 the detection limit if the result
indicated not detected. Modified from CIBA,
1999.
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band divides the site into two zones: the southwest and the northeast. The highest

hydraulic conductivity values are found in the first of these two zones and that is the zone

with more variability. In the northeast section mid-range conductivity values are found.

It has been shown that hydraulic conductivity tends to have a log-normal probability

distribution (Hoeksema and Kitanidis 1985), and in our study this was confirmed. A

conductivity mean value of 33.25 ft/day and a log-conductivity mean value of 1.34 were

obtained using the moving window method (Isaaks and Srivastava 1989). A variogram fit

for the logarithm of the data was obtained by trial and error, the best fit was obtained with

the following isotropic Gaussian model:

where  c
0
=0.2 ,  c=0.75  and  a=1500 ft. The sill is equal to 0.95, the effective range is

equal to 866.025 ft (=a/3), and the variogram has a nugget effect of 0.2. A comparison of

the experimental variogram and the model variogram is shown in figure 10. The Gaussian

model indicates that there is regularity in the site hydraulic conductivity.

4. DISCUSSION AND CONCLUSIONS

One might anticipate that with so much information about the site and the large

database available, a very good match between the model results and the various field

data could be obtained. However, as is often the case, the groundwater quality data are

more difficult to reproduce than the groundwater head data, even with the availability of a

large number of data points. Such is the case for this model. The present model correctly

reproduces the slope of the groundwater head and the general trend of the contaminant

concentrations, but there can be important discrepancies between individual

measurements and model predictions (see figure 11 for an example). This may be

explained by the following observations:

1.  The model was developed for nine chemicals of concern and a compromise had to be

made in the calibration between all of them;

2.  Typically there is much variability in groundwater quality data and it is not easy to

incorporate the sources of variability in a deterministic transport model;

( ){ },)3(exp1)( 2
0 h/a--cchg +=
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3. There is a difference between the volume sampled by a monitoring point and the

volume estimated by the transport model.

A stochastic transport model such as the one that we use in the proposed

methodology has the advantage that it estimates the uncertainty of the predicted

contaminant concentration. So, we should be able to recognize an area in which it is

possible to have discrepancies like those shown in figure 11 from the uncertainty

associated with it. However, it is important to recognize that the stochastic model

prediction uncertainty depends on the random parameters of the model. So, it is important

to evaluate what are the parameters that contribute the most to the prediction uncertainty.

For the present study we think that a second important source of uncertainty may be

the variability of the contaminant concentration at the contaminant sources. In the

hypothetical example considered earlier the concentration at the contaminant source was

modeled as a random term. In figure 2 an example of a realization of the random

contaminant concentration is shown. It can be seen that the abrupt changes in

concentration are similar to the data behavior in figure 11. If modeling the contaminant

sources as random variables becomes necessary, it appears that enough information

exists to characterize them statistically.

The difference between the volume sampled by a monitoring point and the volume

estimated by the transport model can be incorporated in the model when determining the

form of the sampling matrix, Hn.

It is interesting to note that from the geostatistical analysis a hydraulic conductivity

mean of 33.25 ft/day was obtained, while in the model a best-fitting homogeneous

conductivity of 90 ft/day was used for layer three. This discrepancy between the two

values is not surprising, it is well known that the effective hydraulic conductivity of a

random field depends not only on the conductivity mean, but also, on the conductivity

variance (Gelhar 1993).

As with deterministic numerical models, when using a discrete approximation for a

random field the size of the numerical mesh elements must satisfy certain conditions in

order to get a good approximation. Ababou et al. (1989) proposed an empirical rule for this

purpose:

21 Yx
σ

λ
+≥

∆
, (2)
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where Y=log K, λ is the integral range, x∆ is a representative length of the elements of the

model mesh and 2
Yσ is the log-conductivity variance.

The size of the local model mesh elements satisfies this relation. For a Gaussian

model 6/Π= aλ , which in this case yields 443=λ ft approximately. The area of the

largest mesh elements is about 18000 ft
2
, this yields an equivalent square with an area

that has a side length of about 134 ft. If we take this length as representative of the mesh

elements we have 3.3/ =∆xλ . On the other hand 95.11 2 =+ Yσ , so, equation 2 is satisfied.
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