COMPARAÇÃO DO DESEMPENHO DE SURFACTANTES NA SOLUBILIZAÇÃO DE LNAPLS E DE DNAPLS

Samara Boaventura de Moraes¹; Elizabeth Fátima de Souza^{1,*}; Alessandra Borin¹

Resumo - A contaminação do solo e águas subterrâneas por compostos orgânicos tem

recebido grande atenção nas últimas décadas. Solventes orgânicos e produtos

petrolíferos derramados na subsuperfície, presentes como fases imiscíveis em água,

formam as fases líquidas não-aquosas (NAPLs). A remediação de aquíferos intensificada

por surfactantes (Surfactant-Enhanced Aquifer Remediation - SEAR) é uma das técnicas

para aumentar a eficiência de remediação por bombeamento e tratamento. Foram

realizados testes de solubilização de NAPLs compostas (multicomponentes) para avaliar

o desempenho dos surfactantes na solubilização do contaminante.

Abstract – The groundwater contamination by organic compounds has received great attention in

the last decades. Organic solvents and petroleum products spilled in the subsurface present as water

immiscible phases form non-aqueous phase liquids (NAPLs). The surfactant-enhanced aquifer

remediation (SEAR) is one of techniques to increase the remediation efficiency by pump-and-treat.

Solubilization tests of multicomponent NAPLs were used to assess the performance of surfactants

in contaminant solubilization.

Palavras-chave: NAPLs, surfactantes, solubilização

INTRODUÇÃO

Todo processo industrial produz resíduos ou efluentes, que podem variar de

toxicidade em função dos tipos de compostos utilizados, do grau de refinamento do

processo e de sua complexidade, entre outros. A destinação destes resíduos tem sido um

problema ambiental, quando não existem opções de reutilização ou pela necessidade de

alto investimento em transporte e disposição em locais adequados [1]. A existência de

áreas de solos contaminadas por resíduos inadequadamente dispostos pode causar

comprometimento dos recursos hídricos subterrâneos e danos à saúde humana [2].

A remoção de poluentes orgânicos do ambiente é um desafio tecnológico, pois,

muitas vezes, técnicas de tratamento convencionais não têm a eficiência necessária [3].

Faculdade de Química, Centro de Ciências Exatas, Ambientais e de Tecnologias, Pontifícia Universidade Católica de Campinas, Rodovia D. Pedro I, km 136, Parque das Universidades, 13086-900, Campinas, SP - Brasil, fone (19) 3343-7656, fax (19) 3343-7177

Contaminantes orgânicos podem formar as chamadas fases líquidas não-aquosas (NAPLs); as fases leves (LNAPLs) com densidade menor e as fases densas (DNAPLs) com densidade maior do que a da água [1]. NAPLs estão entre os contaminantes mais comuns do solo e fornecem uma fonte contínua de componentes dissolvidos para as águas subterrâneas. A remediação de solos de aquíferos intensificada por surfactantes é uma das técnicas existentes para aumentar a eficiência do método de bombeamento e tratamento, com o aumento da solubilidade dos contaminantes orgânicos e a redução do tempo de remediação [4,5]. O objetivo deste trabalho foi o de testar em escala de laboratório, para posterior aplicação no campo, a utilização de surfactantes para o aumento da solubilização de NAPLs e, portanto, da eficiência do processo de bombeamento e tratamento.

METODOLOGIA

O desempenho das soluções de surfactantes na solubilização das NAPLs compostas foi avaliado com um planejamento fatorial fracionário 2⁵⁻¹ para identificar os efeitos da composição da fase orgânica, do pH, da temperatura e da dureza do meio. Soluções com 2,5% m/v de surfactante não-iônico éster de sorbitan (Tween 40); catiônico brometo de hexadeciltrimetilamônio (CTAB) ou aniônico laurilsulfato de sódio (SDS) foram preparadas com água deionizada (Mili-Q), nas condições desejadas. Foram adicionados 0,5 mL de solução da NAPL desejada, corada com 0,001 g/mL de *Oil Blue N* ou *Oil Red O*, a 25 mL de cada uma das soluções dos surfactantes. As absorbâncias das fases aquosas (espectrofotômetro HP 8351), no máximo de absorção do corante usado, foram usadas para avaliar quantitativamente o desempenho dos surfactantes.

Tabela 1. Condições usadas no planejamento fatorial 2⁵⁻¹ usado para avaliar a solubilização de NAPLs por soluções 2.5 % m/v do surfactante desejado.

Fator para DNAPLs	Nível	Nível	Fator para LNAPLs	Nível	Nível
	(-)	(+)	r ator para arm a ao	(-)	(+)
1. 1,2-Dicloroetano ^a	20 %	40 %	1. Naftaleno ^b	0 %	5 %
2. Clorofórmio	20 %	40 %	2. Tolueno	30 %	60 %
3. pH	5	9	3. pH	5	9
4. Dureza (CaCO ₃ mg/L)	50	250	4. Dureza (CaCO ₃ mg/L)	50	250
5. Temperatura (ºC)	20	30	5. Temperatura (^o C)	20	30

^a Tetracloreto de carbono q. s. 100 %. ^b n-Decano q. s. 100 %.

A identificação dos fatores significativos positivos (em azul) e negativos (em vermelho) foi feita utilizando-se a planilha eletrônica MS-Excel para Planejamento Fatorial desenvolvida por Teófilo e Ferreira [6].

RESULTADOS E DISCUSSÃO

Os resultados obtidos mostraram que alguns dos efeitos significativos, bem como as sinergias e antagonismos entre os fatores, que foram detectados durante a execução do planejamento fatorial, não foram observados quando os efeitos da composição da NAPL, dureza, pH e temperatura foram estudados de forma isolada.

Tabela 2. Efeitos calculados a partir dos dados obtidos com o planejamento fatorial 2⁵⁻¹ da solubilização de DNAPLs coradas com *Oil Red O* e de LNAPLs coradas com *Oil Blue N* por soluções 2,5 % m/v de Tween 40, CTAB ou SDS.

NAPLs	DNAPLs			LNAPLs			
Surfactantes	CTAB	SDS	Tween 40	СТАВ	SDS	Tween 40	
Média	0,127	0,049	0,178	0,218	0,130	0,141	
1	-0,000	0,003	-0,030	-0,020	-0,030	-0,010	
2	0,006	0,000	-0,000	0,016	-0,000	0,003	
3	0,008	0,003	0,006	0,001	-0,010	0,010	
4	0,021	0,005	-0,010	1 ×10 ⁻¹⁷	-0,006	0,001	
5	0,007	0,014	0,007	0,021	0,013	0,043	
12	0,012	0,001	0,006	0,021	0,004	0,009	
13	0,002	-0,000	-0,000	0,028	0,009	-0,010	
14	-0,020	0,006	0,002	0,008	0,018	0,010	
15	-0,010	0,003	-0,020	0,006	-0,010	-0,020	
23	-0,010	0,004	-0,010	0,007	-0,010	0,014	
24	-0,010	0,001	0,018	0,003	-0,000	0,018	
25	-0,020	0,000	-0,000	0,031	0,008	-0,010	
34	0,0006	0,001	-0,000	-0,010	0,004	0,045	
35	0,012	0,000	-0,010	-0,010	0,018	-0,000	
45	-0,020	0,003	0,004	0,005	0,000	-0,010	

Na solubilização de DNAPLs compostas por soluções de CTAB, foi detectado um efeito primário positivo (efeito 4) para aumento da dureza do meio. Há também três efeitos antagônicos (interações 14, 25 e 45) ao se aumentar dureza/1,2-dicloroetano, clorofórmio/temperatura e dureza/temperatura. Para soluções de SDS, foi detectado um efeito primário positivo (efeito 5) de temperatura e duas sinergias (interações 14 e 35) para 1,2-dicloroetano/dureza e pH/temperatura. Para soluções de Tween 40, foi encontrado um efeito principal negativo (efeito 1) de 1,2-dicloroetano; dois efeitos antagônicos (interações 15 e 35) de 1,2-dicloroetano/temperatura e pH/temperatura e um efeito sinérgico (interação 24) de clorofórmio/dureza. Já para a solubilização de LNAPLs compostas por soluções de CTAB foram detectados: um efeito primário negativo (efeito 1) do naftaleno; dois efeitos primários positivos (efeitos 2 e 5) de tolueno e temperatura e três efeitos sinérgicos (interações 12, 13 e 25) de naftaleno/tolueno, naftaleno/pH e

pH/temperatura. Para soluções de SDS, foram detectados dois efeitos principais negativos (efeitos 1 e 3) de pH e naftaleno; um efeito primário positivo (efeito 5) para temperatura; dois efeitos sinérgicos (interações 14 e 35) para naftaleno/dureza e pH/temperatura e um efeito antagônico (interação 15) de temperatura/naftaleno. Quanto às soluções de Tween 40, foram detectados apenas três efeitos significativos: um efeito primário positivo (efeito 5), para temperatura; um efeito sinérgico (interação 34) de pH/dureza e um efeito antagônico (interação 15) de naftaleno/temperatura.

CONCLUSÃO

Os testes realizados em escala de laboratório foram úteis tanto para avaliar a eficiência de soluções de surfactantes na solubilização de NAPLs compostas, como a influência da composição e das condições do meio aquoso sobre o desempenho de solubilização. Para a solubilização de DNAPLs e LNAPLs compostas, os surfactantes SDS e Tween 40, respectivamente, apresentaram os melhores desempenhos, pois foram menos sensíveis a modificações de composição e de condições do meio aquoso.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] MOREIRA, C.A., Aquino, W.F. e Dourado, J.C., 2007. Aplicação do método eletromagnético indutivo (EM) no monitoramento de contaminantes em subsuperfície, Revista Brasileira de Geofísica, vol.25, n.4, p.413-420.
- [2] CETESB, Texto Áreas Contaminadas, Novembro de 2009. Disponível em http://www.cetesb.sp.gov.br/Solo/areas_contaminadas/texto_areas_cont_nov_09_.pdf. Acesso em 19 de setembro de 2010.
- [3] CORRER, C.J., *et al.*, 2007. Aplicação '*in situ*" de surfactantes em solo contaminado com petróleo e tratamento da água residual com agente oxidante. In: 4º PDPETRO, Campinas (SP).
- [4] SCHAERLAKENS, J. e Feyen, J., 2001. Effect of scale and dimensionality on the surfactant-enhanced solubilization of a residual DNAPL contamination, Journal of Contaminant Hydrology, vol.71, n.1-4, p.283-306.
- [5] YANG, K., *et al.*, 2010. Adsorption and conformation of a cationic surfactant on single-walled carbon nanotubes and their influence on naphthalene sorption, Environmental Science & Technology, vol.44, n.2, p.681-687.
- [6] TEÓFILO, R.F. e Ferreira, M.M.C., 2006. Quimiometria II: planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial, Química Nova, vol.29, n.2, p.338-350.Laboratório de Quimiometria Teórica e Aplicada/UNICAMP. http://lgta.iqm.unicamp.br/