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Abstract 

The aim of this work is to compare the use of the inverse solution approach in the estimation of soil hydraulic properties 

with traditional tension disk infiltrometer (TDI) data analysis, field retention data and commonly used pedotransfer 

functions (PTFs). Field data were collected in an experimental plot located at Bahía Blanca, Argentina. Field infiltration 

under saturated conditions was measured by the inverse auger hole method and infiltration under unsaturated condi-

tions were carried out with TDI. Field retention data (θ(h)) were also collected periodically. The HYDRUS 2D/3D software 

was used to optimize soil hydraulic parameters by inverse solution according to TDI data. The saturated hydraulic con-

ductivity measured by inverse auger hole method (5.53 cm.h-1) and calculated by Wooding analytical approach (5.35 

cm.h-1) and inverse numerical simulations (5.36 cm.h-1) showed very close values. According to macroporosity esti-

mates infiltrated water is mainly conducted through soils micro and mesopores.  Macropores only channeled 15.9% of 

total infiltrated flow.  Soil water retention curves (SWRC) predicted by PTFs did not represented correctly field retention 

data. The best adjustment between water content at specific pressure heads predicted by SWRCs and field measured 

water content was reached by the TDI inverse solution approach (RMSE: 0.050 cm3.cm-3). The inverse solution approach 

probed to be a simple and practical method to obtain an accurate estimate of both, SWRC and hydraulic conductivity 

curve. 

 

Resumo 

 

O objetivo deste trabalho é comparar o uso da solução inversa na estimativa das propriedades hidráulicas do solo com 

a análise tradicional de dados por infiltrômetro de disco de tensão (IDT), dados de retenção em campo e funções de 

pedotransferência (FPTs) comumente usadas. Os dados de campo foram coletados em uma parcela experimental lo-

calizada em Bahía Blanca, Argentina. A infiltração no campo sob condições saturadas foi medida pelo método do furo 

inverso e a infiltração sob condições insaturadas foi realizada com IDT. Os dados de retenção de campo (θ(h)) também 

foram coletados periodicamente. O software HYDRUS 2D/3D foi utilizado para otimizar os parâmetros hidráulicos do 

solo por solução inversa, de acordo com os dados do IDT. A condutividade hidráulica saturada medida pelo método do 

furo inverso (5.53 cm.h-1) e calculada pela abordagem analítica de Wooding (5.35 cm.h-1) e simulações numéricas 

inversas (5.36 cm.h-1) mostraram valores muito próximos. Segundo estimativas de macroporosidade, a água infiltrada 

é conduzida principalmente através de microporos e mesoporos do solo. Os macroporos canalizaram apenas 15.9% 

do fluxo total infiltrado. As curvas de retenção previstas pelos FPTs não representaram corretamente os dados de 

retenção em campo. O melhor ajuste entre o teor de água nas tensões específicas previstas pelas curvas de retenção 

e o teor de água medido no campo foi alcançado pela abordagem de solução inversa de IDT (RMSE: 0.050 cm3.cm-3). 

A abordagem de solução inversa demonstrou ser um método simples e prático para obter uma estimativa precisa de 

curvas de re-tenção e de condutividade hidráulica.  

 

 

 

 

 

 

 

 

 

Palavras-chave: 

 

Infiltrômetro de disco.  

Solução inversa.  

Curvas de Retenção.  

Hydrus 2D/3D. 

Peer-reviewed article.  

Received in: 14/07/2020. 

Approved in: 20/08/2020.  

 DOI: http:/dx.doi.org/10.14295/ras.v34i3.29929   

 Papers 

mailto:leonardo.scherger@uns.edu.ar
mailto:victoria.zanello@uns.edu.ar
mailto:lexow@uns.edu.ar
http://dx.doi.org/10.14295/ras.v34i3.29929


SCHERGER, L. E.; ZANELLO, V.; LEXOW, C. Águas Subterrâneas, v. 34, n. 3, p. 310-324, 2020.   311 

1. INTRODUCTION 

Unsaturated soil hydraulic properties estimation is a fundamental 

requirement to successfully predict water movement in soil. 

These properties consist of the soil water retention curve (SWRC), 

which relates the volumetric water content (θ) to the soil water 

pressure head (h), and the hydraulic conductivity curve, which re-

lates the conductivity (K) to h or θ (Ramos et al., 2006). There are 

many techniques available to determine soil hydraulic properties, 

however most of them are time consuming and costly.  

The SWRC can be obtained in field by simultaneous measure-

ment of water contents related to different pressure heads at the 

same soil depth (Rianna et al., 2014; Zhang, 2015; Yan and 

Zhang, 2015). However, these experiences do not fully represent 

the SWRC. The main drawbacks are: a) only a very small part of 

the curve is determined, usually in the range of 0 ≥ h > -750 

cmH2O, b) the method is extremely laborious and requires a large 

number of measurements and c) hysteresis is very difficult to elu-

cidate, even when working in conditions of desiccation and mois-

tening (Kutilek and Nielsen, 1994). SWRC can also be obtained 

by laboratory methods, applying the principle of hydrostatic equi-

librium. Soil columns are subjected to different hydraulic pressu-

res, determining its volumetric moisture content under each re-

gime. Classical techniques are the sand and sand plus kaolin bo-

xes (Romano et al., 2002), the pressure plate extractor (Dane and 

Hopmans, 2002a) and the hanging water column method (Dane 

and Hopmans, 2002b). Evaporation methods (Wind, 1968) allow 

simultaneous measurement of both, the water retention function 

and the hydraulic conductivity. Laboratory methods still have cer-

tain disadvantages, such as: a) the sample volume may not be 

representative of the entire soil, b) the continuity of the poral sys-

tem may be restricted c) macropores could be destroyed in the 

sampling procedure  and d) each technique is characterized by a 

resolution range (Bordoni et al., 2017). Therefore, if the SWRC is 

determined by laboratory techniques, it must be objectively cor-

rected previously it’s used in field experiences. Field reconstruc-

ted SWRC could represent better the hydrological features of a 

soil. Generally, response time of changes in hydrological parame-

ters during field meteorological events is faster than variations 

measured in laboratory controlled conditions (Bordoni et al., 

2017). 

Among the different procedures developed to estimate soil 

hydraulic properties, numerical methods involving inverse solu-

tion of Richards equation (Simunek and van Genuchten, 1997; 

Simunek et al., 1998; Ramos et al. 2006; Rashid et al., 2015; 

Naik et al., 2018; da Silva Junior et al., 2020) are increasingly 

used. Primal advantage of inverse solution approach is that both, 

the soil water retention and hydraulic conductivity curves can be 

estimated simultaneously. The inverse solution comprises a prac-

tical method to estimate soil hydraulic parameters when various 

infiltration tests are carried out under different supply pressure 

heads. Tension disk infiltrometers (TDI) are devices that have gai-

ned popularity in soil hydrology. Through the detailed analysis of 

TDI data can be derived some soil properties such as saturated 

hydraulic conductivity, unsaturated hydraulic conductivity (Rey-

nolds and Elrick, 1991; Reynolds et al., 2000), sortivity (Angulo-

Jaramillo et al., 2000), effective porosity (Bodhinayake et al., 

2004) and macroporosity estimates (Watson and Luxmoore, 

1986). TDI can measure infiltration flux, eliminating the influence 

of preferential flows that usually occurs under saturated condi-

tions. Thus, it is possible to characterize the conduction capacity 

of different pore sizes, including active macro and mesopores 

(Bodhinayake et al., 2004). Simunek and van Genuchten (1997) 

applying numerical inverse solution approach to multi-tension 

disk infiltrometry showed that this procedure provides not only 

information about the saturated hydraulic conductivity, but also 

of SWRC. For this, it is necessary a combination of cumulative 

infiltration data for different supplied heads, unsaturated hydrau-

lic conductivities obtained with the Wooding (1968) approach 

and initial and final water contents for each infiltration test. 

Another alternative to estimate the SWRC is based on pedotrans-

fer functions (PTFs). Pedotransfer functions offer an indirect al-

ternative to estimate soil hydraulic properties. In general, PTFs 

can be defined as methods that predict soil variables that are dif-

ficult to measure using correlations with soil attributes that are 

widely available or can be determined cheaply (Macêdo and Soa-

res, 2020). Various PTFs have been developed, based on diffe-

rent soil properties. Most of them establish a multiple regression 

analysis between θ(h) and soil texture, bulk density and organic 

matter content (Gupta and Larson, 1979; Barros et al., 2013) 

and in some cases PTFs allow the inclusion of water retention 

points (Schaap et al., 2001).  

In the last years, many works have been published offering com-

parisons between the inverse solution method and different ap-

proaches to estimate soil hydraulic parameters. However, most 

of them only included direct TDI measurements or laboratory data 

as comparative results (Ramos et al., 2006; Naik et al., 2018; da 

Silva Junior et al., 2020). Also, infiltration measurements have 

been compared with PTFs method for estimating soil hydraulic 

conductivity (Lee, 2005; Mermound and Xu, 2006; Shein et al., 

2015). Nevertheless, there are few examples in the bibliography 

of comparison between all techniques: field infiltration methods, 

inverse solution approach, PTFs method and in-situ retention 

data. As well, it is necessary to adjust these methods to the con-

ditions of filler studied soils. 

The aim of this work is to compare the use of inverse solution 

approach in the estimation of soil hydraulic properties with tradi-

tional TDI data analysis, field retention data and commonly used 

pedotransfer functions. The HYDRUS 2D/3D software (Simunek 

et al., 2018) was applied to simulate water flow under initial and 

boundary conditions that reproduced exactly field conditions un-

der which TDI data were obtained. The code was used to optimize 

soil hydraulic parameters through the inverse solution method.  

2. MATERIALS AND METHODS 

Field measures were made in the industrial complex of Bahía 

Blanca, Argentina (38 ° 43 "S, 62 ° 16" W). Studied area is loca 
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ted in the northwest coast of Bahía Blanca Estuary (Fig. 1). The 

area comprises a marine abrasion platform on which sediments 

associated with tidal flats are deposited. Natural conditions are 

only present as restricted relics, since most of the area was highly 

modified by human activity. Natural soils were covered with filling 

material to support industrial buildings and roads network. Filler 

soils are primary composed by compacted sandy loam and loamy 

sand sediments. They present 1 - 2 meter thickness and normally 

are enriched in calcium carbonate (Scherger et al., 2019). These 

materials have given new hydrodynamic properties to topsoil and 

therefore the unsaturated water flow regime was  modified.  Kno- 

wledge of the unsaturated hydrodynamic behavior is essential for 

an effective management of soil and water resources, particularly 

in urban or industrial areas. In this environments soil and 

groundwater pollution is a common fact around the world.  

2.1. Field experiments 

Field retention data (θ(h)) was collected from two sets of tensio-

meters (SoilMeasurement Corp.) installed at depths of 30, 60 

and 90 cm (Fig. 2a). Volumetric soil water content was simulta-

neously monitored by gravimetric sampling for the same soil de-

pths (Fig. 2b). Soil characteristics are listed in Table 1. 

 

Figure 1 - Location of study site. Yellow circles show the location of measurements points  

 

Table 1 - Topsoil properties in the experimental plot 

Texture Classification Sanda 

[%] 

Silta 

[%] 

Claya 

[%] 

ρbb 

[g.cm-3] 
ϕc 

[-] 

CO3- d 

[%] 

 

TOCe 

[%] 

pHf 

Sandy loam 56 38 6 1.41 0.46 4.8 0.2 9.5 
a Pipette method. Grain size distribution: sand (2.00–0.05 mm), silt (0.05–0.002 mm) and clay (<0.002 mm) 

(Gee and Bauder, 1986). b ρb: Bulk density. Determined by core method (Blake and Hartge, 1986).  c ϕ: Total 

soil porosity. Measured by soil core technique d Direct calcimeter reading (Hulsemann, 1966). e TOC: Total or-

ganic carbon. Measured by dry combustion. fpH: measured in 1:2.5 soil/water solution. 

 

Field infiltration under saturated conditions was measured by the 

inverse auger hole method (Ojha et al., 2017).  This technique is 

a quick, simple and reliable method for measuring in-situ satura-

ted hydraulic conductivity of soil. Auger holes of 11 cm diameter 

and 35 cm depth were made in studied soil. Water was repea-

tedly filled in bore hole for saturating adjoining soil mass of auger 

holes. When soil saturation was reached, bore holes were re-filled 

with water and fall in water depths with time were recorded for 

30 minutes. Total duration of infiltration tests were three hours 

due to ensuring soil saturation. Saturated hydraulic conductivity 

can be calculated as:  

𝐾𝑠 = 1.15 𝑅 
log (ℎ(𝑡0) +

𝑅
2

) −  log (ℎ(𝑡1) +
𝑅
2

)

𝑡1 − 𝑡0
= 1.15 𝑅 tan 𝜑   

(1) 
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where Ks is the saturated hydraulic conductivity [cm.h-1], R is the 

radius of auger hole [cm] and h(t0) and h(t1) are the water depth 

[cm] at initial (t0) and elapsed time(t1) [h], respectively. Graphi-

cally, log (h(t) + r/2) as a function of elapsed time (t1 – t0) can be 

plotted in order to obtained a straight line. The value of φ corres-

ponds to the slope of the line, y = ax + b. 

Field infiltration under unsaturated conditions was measured 

with a tension disk infiltrometer (SoilMeasurement Corp.) under 

negative pressure heads of 3, 6 and 15 cmH2O. Measurements 

must be made supplying three pressure heads, so a better esti-

mate of soil hydraulic properties can be achieved. Each measu-

rement was made in triplicate and infiltration was measured until 

steady-flow was determined. Initial and final water contents of 

soil volume beneath the permeable membrane were measured 

with a time-domain reflectometer (TDR) (SoilMeasurement Corp.) 

for each infiltration test. Graphic outline of field tasks are illustra-

ted in figure 2c. TDI data were treated according to Wooding´s 

analysis and inverse solution approach.  

 

Figure 2 -  Field experiments. a) Set of tensiometers installed at field site. b) Soil sampling by a helicoidally drill.  

c) Graphic outline of field tests.  
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2.2. Wooding’s analytical approach 

Wooding's (1968) analytical solution is the traditional approach 

to calculate the hydraulic conductivity from tension disk infiltro-

meter data. Steady-state infiltration rate from a disk can be cal-

culated as: 

 

Q = πr2K {1 +
4

πrα
}                (2) 

 

where Q is the steady-state infiltration rate [cm3.h-1], r is the ra-

dius of the disk [cm], α is related to the inverse of the air-entry 

suction [cm-1] and K is the hydraulic conductivity [cm.h-1], given 

by: 

 

K(h) = Ks exp(αh)                                                                               (3) 

 

where Ks is the saturated hydraulic conductivity [cm.h-1] and h is 

the specific pressure head [cmH2O]. 

Wooding’s analysis requires steady-state infiltration rates at dif-

ferent supply pressure heads. Depending on soil texture, it can 

take hours or even days to reach steady state in a field experi-

ment (Ramos et al., 2006). Saturated hydraulic conductivity can 

be calculated from any pair of steady-state infiltration rate corres-

ponding to different supply pressure heads (Ankeny et al., 1991). 

2.3. Effective porosity and macroporosity estimates 

 

The apparent pore diameter can be calculated using the equation 

proposed by Watson and Luxmoore (1986): 

 

r = −
2σ cos γ

ρgh
≅ −

0.15

h
                                                                      (4) 

 

where r is the pore radius [cm], σ is the water tension surface [g.s-

2], γ is the contact angle between water and pore wall (it is assu-

med to be zero), ρ is the water density [g.cm-3], g is the gravity 

acceleration [cm.s-2] and h is the applied pressure head [cmH2O]. 

This equation assumes laminar flow and cylindrical pores shapes. 

Pore size classification proposed by Luxmoore (1981) is adopted, 

who defines as macro, meso and micropores those that drain at 

pressure heads greater than -3 cmH2O, between -3 and -300 

cmH2O and less than -300 cmH2O, respectively. Thus, only pores 

with diameter greater than 1mm are considered macropores. The 

maximum number of effective pores per unit area between radii 

a and b (∩(a, b)), being a <b, can be calculated according to the 

conjunction of the previous equation and the Poiseuille equation 

(Watson and Luxmoore, 1986): 

 

∩(a,b)=  
8u∆K(a,b)

πρg(ra)4                                                                                   (5) 

 

where μ is the water viscosity [g.cm-1.s-1], ΔK(a, b) is the hydraulic 

conductivity for a certain pore range [cm.h-1], and ra is the pore 

radius [cm]. In the case of pore size ranges, ra value will corres-

pond to the smallest radius in the interval. The smallest pores 

correspond to those that develop the highest suction (Gómez-Ta-

gle Chávez et al., 2014).The effective porosity [m2.m-2] is equal 

to: 

 

Θeffective =∩(a,b) πra
2                                                                           (6) 

 

The infiltration flow percentage for each pore size range is deter-

mined by the ratio: 

 

Infiltration flow (%) =
∆Ki

Ks
× 100                                                   (7) 

 

where ΔKi = K(ha) - K(hb) and  ha and hb are the specific pressure 

head for pore sizes with radii a and b. 

2.4. Inverse solution approach 

Field infiltration test were simulated by the HYDRUS 2D/3D sof-

tware (Simunek et al., 2018). The unsaturated water flow is sol-

ved by the modified Richards equations, as: 

 

∂θ

∂t
=

∂

∂xi
[K(Kij

A ∂h

∂xj
+ Kiz

A )]                                                                (8) 

 

where θ is the volumetric water content [cm3,cm-3], h is the pres-

sure head [cmH2O], xi-j (i=1,2,..,n) are the spatial coordinates, t is 

time [h], Kaij are components of a dimensionless anisotropy ten-

sor and K is the unsaturated hydraulic conductivity [cm.h-1]. 

The following constitutive relationships are required to solve Ri-

chard’s equation. Van Genuchten (1980) proposed such rela-

tions as: 

 

Se =
Ө − Өr

Өs − Өr
=  1 +  [(αh)n]−m                                                        (9) 

 

 

𝐾(𝑆𝑒) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1
𝑚)𝑚]

2

                                               (10) 

 

where Se is the effective water saturation [-], θr is the residual 

water content [cm3.cm-3], θs is the saturation water content 

[cm3.cm-3]. α is related to the inverse of the air-entry suction (ha) 

[cm-1], h is the pressure head [cmH2O], n and m are empirical 

parameters [-] (m=1-n-1). Ks is the saturated hydraulic conducti-

vity [cm.h-1] and l is the pore connectivity parameter [-] in the 

hydraulic conductivity function, estimated to be about 0.5 as an 

average for many soils (Mualem, 1976). 

Water flow was simulated in a 2D rectangle domain of 20 cm wide 

and 15 cm deep. Initial conditions were introduced in terms of 

volumetric water content, according to initial humidity measured 

in field for each infiltration test. Top boundary was prescribed as 
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a variable pressure head boundary condition whose dimensions 

are equal to TDI permeable membrane radius. The remaining top 

nodes and lateral nodes were considered as a no flux boundary 

condition. The lower boundary was assumed as a free drainage 

boundary condition (Fig. 3). Simulation time was expressed in mi-

nutes, according to the duration of each infiltration test. 

 

Figure 3 - Water flow domain and boundary conditions used in numerical simulation.  

 

 

Inverse solution data consisted of cumulate water flux [cm3] ex-

pressed in a time frequency of two minutes and the initial and 

final volumetric water content for each test. Initial soil hydraulic 

parameters were estimated according to Wooding analytical ap-

proach (α, Ks) and the Rosseta pedotransfer function (θs, θr, n) 

(Schaap et al., 2001) (Table 2). Initial estimates for θs, θr and n 

were obtained based on soil texture and bulk density (Table 1). 

Parameter optimization was carried out for θs, α, Ks and n. These 

constants are considered as the main factors controlling water 

flow in the unsaturated zone. 
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Table 2 - Initial estimates of soil hydraulic parameters and flow conditions for each simulation. 

TEST 1 

Initial soil hydraulic parameters 

θs [cm3.cm-3] θr [cm3.cm-3] α [1.cm-1] n [-] 
Ks 

[cm.h-1] 
l 

0.4 0.035 0.0506 1.43 5.86 0.5 

Flow conditions 

Pressure head supplied [cmH2O] -3 -6 -15 

Time [min] 0 - 30 30 - 54 54 - 68 

Initial water content 

[cm3.cm-3] 
0.12 

Final water content 

 [cm3.cm-3] 
0.375 

TEST 2 

Initial soil hydraulic parameters 

θs [cm3.cm-3] θr [cm3.cm-3] α [1.cm-1] n [-] 
Ks 

[cm.h-1] 
l 

0.4 0.035 0.0635 1.43 5.61 0.5 

Flow conditions 

Pressure head supplied [cmH2O] -3 -6 -15 

Time [min] 0 - 40 40 - 64 64 - 98 

Initial water content 

[cm3.cm-3] 
0.2 

Final water content  

[cm3.cm-3] 
0.38 

TEST 3 

Initial soil hydraulic parameters 

θs [cm3.cm-3] θr [cm3.cm-3] α [1.cm-1] n [-] 
Ks 

[cm.h-1] 
l 

0.4 0.035 0.0590 1.43 4.56 0.5 

Flow conditions 

Pressure head supplied [cmH2O] -3 -6 -15 

Time [min] 0-32 32 - 72 72 - 118 

Initial water content 

[cm3.cm-3] 
0.13 

Final water content  

[cm3.cm-3] 
0.38 

 

Soil hydraulic parameters optimization by inverse solution is ba-

sed on the minimization of error between observed and simula-

ted values. User-entered initial estimate are iteratively optimized 

until the highest possible precision is achieved. Solution is ac-

complished by the Levenberg-Marquardt method, which it is ba-

sed on least-squares solution approach (Marquardt, 1963). 

2.5. Pedotransfer functions applied 

To determine van Genuchten hydraulic parameters (Eqn. 9), 

three types of PTFs were applied. The PTFs based model may be 

useful when the parameters are computed using easily available 

soil properties such as texture, bulk density and organic content. 

The first PTF applied was proposed by Gupta and Larson (1979), 

which includes five soil variables: 

 

𝜃𝑝 = 𝑎 ∗ %𝑠𝑎𝑛𝑑 + 𝑏 ∗ %𝑠𝑖𝑙𝑡 + 𝑐 ∗ %𝑐𝑙𝑎𝑦 + 𝑑 ∗ 𝑂𝑀 + 𝑒

∗  𝜌𝑏                                                                     (11) 

 

where θp is the predict water content [cm3.cm-3] for a given pres-

sure head and a, b, c, d and e are the regression coefficients that 

depends on matric potential. OM is the organic matter [%] and ρb 

is the bulk density [g.cm-3]. In this case, van Genuchten parame-

ters were adjusted base on θp(h) points obtained from Eqn. 11. 

Model was developed from the measured SWRC of 43 artificially 

packed soil cores from ten geographic locations in eastern and 

central United States. 

The second PTF was calculated by Barros et al. (2013). Regres-

sion equation was made for tropical soils in northeastern Brazil 

using water retention data of undisturbed samples. It included 

four soil variables: content of sand (S) [kg.kg-1], clay (C) [kg.kg-1], 

organic matter (O) [kg.kg-1] and bulk density (ρb) [kg.m-3]. 

 

𝑦𝑖 = 𝛽𝑖,0 + 𝛽𝑖,1𝑆 + 𝛽𝑖,2𝐶 + 𝛽𝑖,3𝑂 + 𝛽𝑖,4𝜌𝑏 + 𝜀𝑖                             (12) 

 

where y1 corresponded to the respective van Genuchten parame-

ters, here treated as PTF response variables: α = 10y1; n = y2; θr 

= y3 and θs = y4. βi,n represented the linear regression coefficients: 

βi,0 the intercept, βi,1, βi,2, βi,3 and βi,4 are parameters referring to 

sand, clay, organic matter content and bulk density, respectively. 

εi is the random error associated to each observation. 

Last PTF considered was Rosseta (Schaap et al., 2001). This PTF  
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was obtained from a large number of soil hydraulic data and soil 

properties from three databases. Most of the samples were deri-

ved from soils in template to subtropical climates of North Ame-

rica and Europe. The data set contained 2134 soil samples for 

water retention with 20547 θ(h) points. Initially, soil hydraulic pa-

rameters were predicted according to soil texture and bulk den-

sity. Rosseta also allows the inclusion of water retention points to 

be used to estimate van Genuchten (1980) parameters. The 

RECT code (van Genuchten, 1991) was used to optimize initial 

estimation including field retention data.   

2.6. Statistic validations  

The goodness of fit between field measurements and predicted 

data is verified using the statistical parameters: coefficient of de-

termination (R2) and root mean square error (RMSE). The R2 is a 

statistical measure of how well the regression predictions appro-

ximate the real data points, and can be calculated from the fol-

lowing expression: 

 

𝑅2 =
𝑆(𝑥𝑦)

2

𝑆(𝑥𝑥) − 𝑆(𝑦𝑦)
                                                                              (13) 

 

where S(xy) is the sum of squares of  measured (X) and predicted 

(Y) values, S(xx) is the sum of squares of X and S(yy) is the sum 

of squares of Y. A value of 1 obtained from Eqn. (13) indicates a 

perfect correlation between the fitted and observed values. 

The RMSE is the standard deviation of the residuals (prediction 

errors) and is expressed as: 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
                                                               (14) 

 

where Pi and Oi are the predicted and measured values, respecti-

vely and n is the number of observations data. 

3. Results and discussion 

3.1. Inverse auger hole method 

The inverse auger hole method was used to determine in-situ sa-

turated hydraulic conductivity. Fall of water depth with time is 

shown in figure 4a. Ojha et al. (2017) explain that a linear drop in 

water depths indicates poor saturated hydraulic conductivity of 

the soil, as curvilinear drop relates to higher values.  The slope of 

a line plotted between log(h+r/2) and time can be seen in figure 

4b. According to an average slope of 0.000243 and Eqn. (1), Ks 

was calculated as 5.53 cm.h-1.  

 

Figure 4 - Inverse auger hole method results. a) Water depth variation with time in auger hole. b) Variation of  

                 log(h-r/2) with time 

 

3.2. Tension disk infiltrometry 

3.2.1. Wooding’s analytical approach 

Hydraulic conductivity is higher at saturated conditions (h= 0 

cmH2O) and decrease as negative pressure heads increase. This 

behavior is observable in figure 5, where cumulated infiltration 

over time is shown for infiltration tests under different supplied 

pressure heads. Slopes of the lines, y = ax + b, become smaller 

as supplied pressure head increase reflecting the participation of 

smaller pores in the infiltration process. 
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Figure 5 - Cumulative infiltration over time for different supplied pressure heads. 

 
According to Eqn. (2) an average saturated hydraulic conductivity 

of 5.35 cm.h-1 was determined for the sandy loam soil. This value 

is similar to that obtained by the inverse auger hole method. Re-

sults from TDI data showed some variability, with standard devi-

ation values of 0.69 cm.h-1 under saturated conditions. Variability 

reduced for higher negative pressure heads (Table 3). This can 

be related to macropores shape, which characterized by great di-

mensional and/or spatial variability in field. Otherwise, when in-

filtration was measured at higher negative supplied pressure 

head, water flow is mainly channelized by soil matrix porosity 

(meso and micropores). These pore size ranges have relatively 

more homogeneous qualities. The unsaturated hydraulic condu-

ctivity was reduced, as pressure head supplied to TDI permeable 

membrane was increased. When infiltration was measured at a 

pressure head equal to -15 cmH2O, unsaturated hydraulic condu-

ctivity presented lower values than 4 cm.h-1 in all cases. 

Wooding´s approach also allows estimation of parameter α from 

van Genuchten hydraulic model. This parameter was calculated 

as 0.05059, 0.06354 and 0.05898 for each infiltration test. 

Thus, air-entry value can be assumed to be around -15 and -20 

cmH2O.  

 

Table 3 - Hydraulic conductivities estimated by Wooding’s approach 

Test 1 Test 2 Test 3 
S.D [cm.h-1] 

h [cmH2O] K(h) [cm.h-1] h [cmH2O] K(h) [cm.h-1] h [cmH2O] K(h) [cm.h-1] 

0 5.87 0 5.62 0 4.57 0.69 

-3 5.41 -3 4.99 -3 4.41 0.51 

-6 5.00 -6 4.43 -6 4.25 0.39 

-15 3.93 -15 3.10 -15 3.81 0.44 

S.D: Standard deviation. 

 

3.2.2. Effective porosity and macroporosity estimates 

 

Infiltration was measured in the range of 0 < h <-15 cmH2O. This 

range comprises pore sizes whose diameter is greater than 0.2 

mm. Although this pore size range represents only 3.82% of total 

soil volume, approximately 58% of infiltrated flow is channeled 

into them (Table 4). Pores with diameters greater than 1 mm par-

ticipate only in 15.9% of total water flux. Mesopores and micro-

pores channelized the mayor proportion of infiltrated water. This 

behavior can be attributed to soil compaction, resulting in redu-

ced inter-aggregate structure and macropores destruction. Drai-

nage variability in macropores is associated with soil structure 

and aggregation, while mesopores and micropores are predomi-

nantly related to sediments textural variability. 
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Table 4 - Calculated effective porosity for different pore size ranges 

Pressure head [cmH2O] 
Pore diameter 

[mm] 
∩.m2 

Soil volume 

[%] 
ΔKi [cm.h-1] 

Ks 

[cm.h-1] 
Flow percentage [%] 

0 - (-3) > 1 984 0.08 0.85 - 15.9 

(-3) - (-6) 1 – 0.5 13330 0.26 0.72 - 13.4 

(-6) - (-15) 0.5 – 0.2 1.11E+6 3.48 1.53 - 28.7 

 <0.2   2.25 - 42.1 

Total   - 5.35 - 

 

3.2.3. Inverse solution approach 

 

HYDRUS software was used to simulate the infiltrated water flow 

in field tests. Simulated and observed cumulated infiltrated flu-

xes [cm3] for each field test are shown in figure 6. For the three 

simulations, R2 had values higher than 0.98 and RMSE was lower 

than 0.04 cm3.min-1. Inverse solution was used to optimize 

hydraulic parameters for topsoil. Van Genuchten parameters pre-

dicted for each field test are listed in table 5.

 

Figure 6 - Measured and simulated cumulate infiltration flux for each field test. 
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The saturated water content (θs) was estimated at 0.378 cm3.cm-

3 by inverse solution method. This value is similar to final water 

contents measured at the end of each infiltration tests (range 

0.375 – 0.38 cm3.cm-3). Ramos et al. (2006) showed similar re-

sults applying inverse solution approach, where θs agreed closely 

with values determined using laboratory data and field measure-

ments in loamy soils. Otherwise, estimated θs parameter is lower 

than total soil porosity measured by soil core technique (0.46 

cm3.cm-3). deVos et al. (1999) suggested that the field-saturated 

water content may be much smaller than the porosity because of 

entrapped air, the presence of flow irregularities, and deviations 

from equilibrium flow theory.  

Saturated hydraulic conductivity measured by inverse auger hole 

method and calculated by Wooding analytical approach presen-

ted a value of 5.53 cm.h-1 and 5.35 cm.h-1 respectively. Similarly, 

Ks predicted by inverse solution approach were 5.86 cm.h-1, 5.65 

cm.h-1 and 4.56 cm.h-1 for each field infiltration test, with average 

value being 5.36 cm.h-1.  Results showed great agreement with 

field measurements.  

 

Table 5 -  Soil hydraulic parameters optimized by inverse solution approach 

 θs [cm3.cm-3] θr [cm3.cm-3] α [1.cm-1] n [-] Ks [cm.h-1] l R2 RMSE [cm3.min-1] 

Test 1 0.380 0.035 0.0392 1.3843 5.86 0.5 0.991 0.037 

Test 2 0.375 0.035 0.0336 1.3061 5.65 0.5 0.992 0.029 

Test 3 0.380 0.035 0.0300 1.3065 4.56 0.5 0.982 0.037 

Average  0.378 0.035 0.0343 1.3323 5.36 0.5   

 

Contrary, parameter α predicted by inverse solution is lower than 

the value calculated according to Wooding´s approach. In this 

case, parameter α had an average value of 0.0343. Conse-

quently, air-entry value will be equal to -29 cmH2O. This pheno-

menon may be due to the fact that simulation did not consider 

hysteresis phenomenon as shown in many works (Kool and Par-

ker, 1987; Likos et al., 2014; Bordoni et al., 2017). As field infil-

tration was measured for the wetting branch of the SWRC, there 

could be some discrepancies between α value predicted by mo-

del simulations and field data. When passing from wetting to 

drying conditions, a decrease in α fitting parameter is highlighted. 

3.3. Determination of soil hydraulic parameters by pedotransfer 

functions  

SWRC was also estimated according to three different PTFs. Van 

Genuchten parameters for each PTF are listed in table 6. Resi-

dual and saturated water content vary according to PTF used 

from 0.034 cm3.cm-3 to 0.098 cm3.cm-3 and 0.369 cm3.cm-3 to 

0.468 cm3.cm-3, respectively. Values obtained from Rosseta-PTF 

(III-IV) are very close to those reached by inverse solution appro-

ach. Contrary, PTF (I) overestimated the residual water content 

and PTF (II) overestimated the saturated water content. Parame-

ter α ranged from 0.011 to 0.126 cm-1 and parameter n ranged 

from 1.388 to 1.715. Values obtained from PTFs (I) and (II) differ 

more than Rosseta-PTF (III-IV) from parameters optimized by in-

verse solution approach. Pachepsky and Rawls (2004) recom-

mended the use of PTFs for regions or soil types similar to those 

in which they were developed. PTF (I) was developed for specific 

soils of the United States while PTF (II) was created for soils of 

tropical climates. Since the edaphic properties of such soils could 

be vastly different from studied soil, discrepancies are expected. 

Otherwise, Rosseta-PTF is based on a much larger soil catalogue 

than the others two PTF applied. 

 

Table 6 - van Genuchten parameters based on PTFs applied 

PTF θr [cm3.cm-3] θs [cm3.cm-3] α [1.cm-1] n [-] 

I 0.098 0.400 0.0114 1.525 

II 0.057 0.468 0.1264 1.715 

III 0.034 0.369 0.0208 1.444 

IV 0.034 0.373 0.0239 1.388 

I: Gupta and Larson (1979). II: Barros et al. (2013). III: Rosseta-Schaap et al. (2001). IV: Rosseta optimized. 
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3.4.  Soil water retention and hydraulic conductivity curves com-

parisons 

SWRCs estimated by inverse solution for each TDI test are pre-

sented in figure 7a and SWRCs predicted by PTFs are shown in 

figure 7b. SWRCs are compared with field retention data (θ(h)) 

(n=60 observation points). Agreement between water content at 

specific pressure heads predicted by SWRCs and measured wa-

ter content was quantified by the RMSE. The best adjust was achi-

eved by the inverse solution approach (RMSE=0.050 cm3.cm-3). 

It is follow by the Rosseta-PTF, when field retention data was in-

corporated in the objective function (RMSE= 0.092 cm3.cm-3). Si-

milar results were obtained when SWRC was predicted by Ros-

seta-PTF (RMSE=0.093 cm3.cm-3) and Gupta and Larson-PTF 

(RMSE=0.094 cm3.cm-3) using texture and bulk density data. The 

worst adjustment was made by Barros et al.-PTF (RMSE: 0.226 

cm3.cm-3). Parameters θs, α and n predicted by this PTF differed 

greatly from values optimized by the inverse solution approach. 

 

 

Figure 7 - SWRC estimations comparison. a) SWRCs estimated by inverse solution approach. b) SWRCs predicted  

                 by PTFs and TDI inverse solution 

 

 

 

In figure 7a, it can be seen that SWRCs represent three curves of 

the SWRCs family. Accordingly, TDI estimated curves are limited 

by both field retention curves, the wetting and drying branches. 

Since SWRC laboratory retention point are not available, the 

SWRC obtained from field methodologies present their validity 

range under the pressure head range of 0 >h> -800 cmH2O only. 

It is necessary to appeal to laboratory practices when determina-

tions are needed for higher hydraulic pressures. Rashid et al. 

(2015) propose the incorporation of independent retention data 

for high values of pressure head (e.g.: -15000 cmH2O), especially 

to define the dry branch of the SWRC. Similarly, Ramos et al. 

(2006) indicated that the main limitation of the inverse solution 

method is the dependence on the water contents field measure-

ment. Given the spatial variability, some problems may arise re-

lated to the correct determination of initial water content in soil. 

These effects are reduced when water contents at -100 and -

15000 cmH2O were incorporated into the objective function. 
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Hydraulic conductivity curves estimated by Wooding´s analytical 

method and inverse solution approach are shown in figure 8. Un-

like Ks value for the sandy loam soil predicted by both methods is 

very similar, there are some discrepancies between K(h) function 

when negative pressure heads increase. Several studies have 

shown that Wooding´s approach tends to overestimate the 

hydraulic conductivity if steady-state infiltration is not reached 

(Bagarello et al., 2000). Nevertheless, possible error is usually 

dismissed as being negligible relative to errors related to soil he-

terogeneity or lack of reproducibility of the infiltration experimen- 

ts (Ramos et al., 2006). When comparing field measurements va-

riability between both methods, it can be seen that field uncer-

tainties prevail in the suction range close to saturation (h > -0.1 

cmH2O). Under this condition, fill area representing variability in 

the infiltrations tests overlaps as the hydraulic conductivity in-

crease (Fig. 8). However, under unsaturated conditions of greater 

interest (h < -0.1 cmH2O) discrepancies related to field heteroge-

neities lose importance with respect to the variability related to 

each approach.  

 

Figure 8 - Unsaturated hydraulic conductivity curve. Fill area represents measurements  

                 variability in the three infiltration tests 

 

4. CONCLUSIONS 

• The use of TDI data in soil hydraulic parameters determi-

nation by inverse solution approach probed to be a simple 

and practical method to obtain an accurate estimate of 

both, SWRC and K(h).  

• The saturated hydraulic conductivity measured by inverse 

auger hole method (5.53 cm.h-1) and calculated by Wo-

oding analytical approach (5.35 cm.h-1) and inverse nume-

rical simulations (5.36 cm.h-1) showed very close values.  

• According to TDI data mesopores and micropores channe-

lized the mayor proportion of infiltrated water. Macropores 

only participate in 15.9% of total water flux.  

• SWRCs predicted by PTFs did   not   correctly  represented  

field retention data. The best adjustment between water 

content at specific pressure heads predicted by SWRCs 

and field measured water content was reached by the TDI 

inverse solution approach (RMSE: 0.050 cm3.cm-3). 

• Unsaturated conductivity curve showed discrepancies 

between values calculated by Wooding´s and inverse so-

lution approach. 
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