A solution for the Richards equation in layered soil profiles with a single domain approach

Published
2021-10-18
Keywords: Equação de Richards, Enfoque de domínio único, Método das linhas. Richards equation, Single domain approach, Method of lines.

    Authors

  • Diego Lopes Universidade Federal do Pará (UFPA), Belém, PA
  • Diego Estumano Universidade Federal do Pará (UFPA), Belém, PA
  • Emanuel Macêdo Universidade Federal do Pará (UFPA), Belém, PA
  • João Quaresma Universidade Federal do Pará (UFPA), Belém, PA

Abstract

This article aims to develop a Richards equation solution for one-dimensional water flow through layered soil profiles, using a single domain approach. A mathematical formulation was proposed in which a transition function is inserted in the modeling to smooth out the discontinuities present at the interfaces. The Method of Lines (MOL), together with a finite volume scheme, is used to solve it. A comparison is made between the results obtained and those in the literature to verify the model. For all the cases studied, a convergence analysis was carried out, and numerical experiments were performed to analyze the influences of the physical parameters Ks and α. Results were obtained in terms of moisture content (θ) and converted in hydraulic pressure (ψ), showing good agreement with the literature values. Such results showed that the problem in a single domain approach could deal with the discontinuity present at the interfaces; this way, the suggested transition function is viable to solve the Richards equation.

References

ALMEIDA, A.P.; NAVEIRA-COTTA, C.P.; COTTA, R.M. Transient Multidimensional Heat Conduction in Heterogeneous Me-dia: Integral Transform with Single Domain Formulation. Int. Comm. Heat & Mass Transfer, v.117, p. 104792 , 2020. https://doi.org/10.1016/j.icheatmasstransfer.2020.104792

BERARDI, M.; DIFONZO, F.; NOTARNICOLA, F.;, VURRO, M. A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone. Applied Numerical Mathematics, v. 135, p. 264-275, 2019. https://doi.org/10.1016/j.apnum.2018.08.013

BERARDI, M.; DIFONZO, F.;VURRO, M.; LOPEZ L. The 1D Ri-chards’ equation in two layered soils: a Filippov approach to treat discontinuities. Advances in water resources, v. 115, p. 264-272, 2018. https://doi.org/10.1016/j.advwatres.2017.09.027

BROADBRIDGE, P.; DALY, E.; GOARD, J. Exact Solutions of the Richards Equation with Nonlinear Plant-Root Extraction. Water Resources Research, v. 53, n. 11, p. 9679-9691, 2017. https://doi.org/10.1002/2017WR021097

BRUNONE, B.; FERRANTE, M.; ROMANO, N.; SANTINI, A. Nu-merical simulations of one-dimensional infiltration into layered soils with the Richards equation using different estimates of the interlayer conductivity. Vadose Zone Jour-nal, v. 2, n 2, p. 193-200, 2003. https://doi.org/10.2113/2.2.193

CELIA, A,; BOULOUTAS, T.; ZARBA, L. A general massa-conservative numerical solution for the unsaturated flow equation. Water Resources Research. v.26, n 7, p.1483-1496, 1990. https://doi.org/10.1029/WR026i007p01483

COTTA, R.M.; LISBOA. K.M.; ZOTIN, J.L.Z.; Integral transforms for flow and transport in continuum and discrete models of fractured heterogeneous porous media, Water Resources, v. 142, n. 2, p.1-17, 2020a. https://doi.org/10.1016/j.advwatres.2020.103621

COTTA, R.M.; NAVEIRA-COTTA,; C.P.; VAN GENUCHTEN, M.T.; SU, J.; QUARESMA, J.N.N.; Integral Transform Analysis of Radionuclides Migration in Variably Saturated Media with Physical Non-equilibrium Model: Application to Solid Waste Leaching in Uranium Mining. Annals of the Brazilian Aca-demy of Sciences, v.92, n.1, p. 1-28, 2020b. https://doi.org/10.1590/0001-3765202020190427

FARTHING, M.W.; OGDEN, F.L.; Numerical Solution of Ri-chards’ Equation: A Review of Advances and Challenges. Soil Science Society of America Journal, v. 81, n. 6, p. 1257-1269, 2017. https://doi.org/10.2136/sssaj2017.02.0058

GARDNER, W. Some steady-state solutions of the unsatura-ted moisture flow equation with application to evaporation from a water table. Soil science, v. 85, n. 4, p. 228-232, 1958. https://doi.org/10.1097/00010694-195804000-00006

HILSS R; PORRP I; HUDSON B; WIERENGA J. Modeling one-dimensional infiltration into very dry soils 1. Model deve-lopment and evaluation. Water Resources Research, v.25, n 6, p.1259-1269, 1989. https://doi.org/10.1029/WR025i006p01259

HIRATA, S.; GOYEAU, B.; GOBIN, D.; NAVEIRA-COTTA, C.; COT-TA, R. M. Linear stability of natural convection in superposed fluid and porous layers: Influence of the interfacial model-ling. International Journal of Heat and Mass Transfer. v.50, n 7-8, p.1356–1367, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.038

IMSL Library, MATH/LIB, Houston, TX, 1994.

KANZARI, S.; MARIEM, S. Kirchhoff Transformation of Ri-chards

Equation for Simulating Water Flow in Porous Media. System

Science and Apllied Mathematics, v.2, n 2, p. 8-12, 2017.

KNUPP, D.; COTTA, R.; NAVEIRA-COTTA, C.; KAKAÇ, S. Transi-ent conjugated heat transfer in microchannels: Integral transforms with single domain formulation. International Journal of Thermal Sciences, v. 88, p. 248-257, 2015. https://doi.org/10.1016/j.ijthermalsci.2014.04.017

LAIO, F.; PORPORATO, A.; RIDOLFI, L.; RODRIGUEZ I. Plants in water-controlled ecosystems: Active role in hydrologic pro-cesses and response to water stress. Adv. Water Resour. v. 24, n 7, p. 707–723, 2001. https://doi.org/10.1016/S0309-1708(01)00005-7

LIBARDI, P. L. Dinâmica da Água no Solo. v. 61. Edusp, 2005.

LISBOA, K.; SU, J.; COTTA, R. M. Single domain integral trans-form analysis of natural convection in cavities partially filled with heat generating porous medium. Numerical Heat Trans-fer, Part A: Applications. v.74, n 3, p. 1068-1086, 2018. https://doi.org/10.1080/10407782.2018.1511141

MALISKA, C. R. Transferência de calor e mecânica dos flui-dos computacional. 2. ed. Rio de Janeiro: Livros Técnicos e Científicos Editora, v. 200, 2004.

MÄNNICH, M. Desenvolvimento de soluções analítica e nu-mérica da equação de Richards. [Dissertação]. Curitiba (PR): Universidade Federal do Paraná; p.129, 2008.

MATTHEWS, C. J.; COOK, F. J.; KNIGHT, J. H.; BRADDOCK, R. D. Handling the water content discontinuity at the interface between layered soils within a numerical scheme. Soil Re-search, v. 43, n. 8, p. 945-955, 2006. https://doi.org/10.1071/SR05069

MATTHEWS, C.; BRADDOCK, D.; SANDER, G. Modeling Flow Through a One-Dimensional Multi-Layered Soil Profile Using the Method of Lines. Environmental Modeling & Asses-sment. v. 9, n. 2, p.103-113, 2004. https://doi.org/10.1023/B:ENMO.0000032092.10546.c6

ORGOGOZO, L.; RENON, N.; SOULAINE, C.; HÉNON, F.; TO-MER, S.K,; QUINTARD, M. An open source massively parallel solver for Richards equation: Mechanistic modelling of water fluxes at the watershed scale. Computer Physics Communi-cations, v. 185, n. 12, p. 3358-3371, 2014. https://doi.org/10.1016/j.cpc.2014.08.004

ÖZISIK, M.N.; ORLANDE H. R. B.; COLAÇO, M. J.; COTTA, R. M. Finite difference methods in heat transfer. 2. ed. New York: CRC Press. 2017. https://doi.org/10.1201/9781315168784

PHILIP J. Theory of Infiltration:1.the Infiltration Equation and Its Solution. Soil Science, v. 83, n. 5, p. 345-358, 1957.10. Hillel D. Environmental soil physics. San Diego: Academic Press; 1998.144 p. https://doi.org/10.1097/00010694-195705000-00002

RICHARDS LA. Capillary conduction of liquids through porous mediums. Physics Rev. v.54, n 6, p. 318-333, 1931. https://doi.org/10.1063/1.1745010

ROMANO, N.; BRUNONE, B.; SANTINI A. Numerical analysis of one-dimensional unsaturated flow in layered soils. Advances in Water Resources. v. 21, n. 4, p. 315-324, 1998. https://doi.org/10.1016/S0309-1708(96)00059-0

ROMANO, N.; BRUNONE, B.; SANTINI, A. Numerical analysis of one-dimensional unsaturated flow in layered soils. Ad-vances in Water Resources. v.21, n 4, p.315-324, 1998. https://doi.org/10.1016/S0309-1708(96)00059-0

SCHIESSER, William E.; GRIFFITHS, Graham W. A compen-dium of partial differential equation models: method of lines analysis with Matlab. Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511576270

SIMUNEK, J.; VAN GENUCHTEN, M.; SEJNA M. The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably saturated media. Technical manual, version, v. 1, p. 241, 2006.

SRIVASTAVA, R.; YEH, T. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resources Research, v. 27, n 5, p.753-762,1991. https://doi.org/10.1029/90WR02772

VERSTEEG, Henk Kaarle; MALALASEKERA, Weeratunge. An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007.

WENDLAND, E.; PIZARRO, M. Modelagem computacional do fluxo unidimensional de água em meio não saturado do solo. Engenharia Agrícola, Associação Brasileira de Enge-nharia Agrícola, v.30, n 3, p 424-434, 2010. https://doi.org/10.1590/S0100-69162010000300007

YEH, G.T.; SHIH,D.S.; CHENG, J.R.C. An integrated media, integrated processes watershed model. Computers and Fluids. Computers & Fluids, v. 45, n. 1, p. 2-13, 2011. https://doi.org/10.1016/j.compfluid.2010.11.018

ZHA, Y.; YANG, J.; ZENG, J.; TSO, C. H.; ZENG, W.; SHI L. Review of numerical solution of Richardson-Richards equa-tion for variably saturated flow in soils. Wiley Interdiscipli-nary Reviews: Water. v.6, n 5, p.1-23, 2019. https://doi.org/10.1002/wat2.1364

ZHA, Y.; YANG, J.; SHI, L.; SONG X. Simulating One-Dimensional Unsaturated Flow in Heterogeneous Soils with Water Content-Based Richards Equation. Vodose Zone Jour-nal, v. 12, n 2, p.1-13, 2013. https://doi.org/10.2136/vzj2012.0109

ZHAN, T. L.T.; NG, C.W.W. Analytical analysis of rainfall infil-tration mechanism in unsaturated soils. International Jour-nal of Geomechanics, v. 4, n. 4, p. 273-284, 2004. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(273)

ZHU, H.; LIU, T.; XUE, B.; YINGLAN, A.; WANG G. Modified Richrads’Equation to Improve Estimates of Soil Moisture in Two-Layered Soils after Infiltration. Water Rev, v.10, n 9, p.1174-1190, 2018. https://doi.org/10.3390/w10091174

How to Cite
Lopes, D. ., Estumano, D., Macêdo, E., & Quaresma, J. (2021). A solution for the Richards equation in layered soil profiles with a single domain approach. Águas Subterrâneas, 35(2), e30022. https://doi.org/10.14295/ras.v35i2.30022