Spatial distribution of stable isotopes (18O and 2H): links between precipitation, surface and groundwater and geomorphological impact in a poorly drained plain, Cordoba, Argentina

Published
2025-05-27
Keywords: Aquífero, Isótopos, Planície, Isoscape, Geomorfologia Aquifer, Isotopes, Plain, Isoscape, Geomorphology Aquífero, Isótopos, Planície, Isoscape, Geomorfologia

    Authors

  • Miguel Pascuini Universidad Nacional de Rio Cuarto, Córdoba – Argentina
  • Adriana Cabrera Universidad Nacional de Rio Cuarto, Córdoba – Argentina
  • Monica Blarasin Universidad Nacional de Rio Cuarto, Córdoba – Argentina
  • Becher Quinodóz Fátima Universidad Nacional de Rio Cuarto, Córdoba – Argentina
  • Lutri Veronica Universidad Nacional de Rio Cuarto, Córdoba – Argentina
  • Matteoda Edel Universidad Nacional de Rio Cuarto, Córdoba – Argentina
  • Giacobone Daniela Universidad Nacional de Rio Cuarto, Córdoba – Argentina
  • Pramparo Santiago Universidad Nacional de Rio Cuarto, Córdoba – Argentina
  • Schroeter German Universidad Nacional de Rio Cuarto, Córdoba – Argentina

Abstract

The aim of this study is to establish the relationships between the spatial distribution of the isotopic composition of surface and groundwater with geomorphological factors and precipitation, using isotopic techniques, in the urban and rural area of Canals, located in a sector of the Pampean Plain, in the province of Córdoba, Argentina. Drainage in the region is moderately impeded, with the presence of dunes and deflation basins with lagoons. The free aquifer present is composed of fine and very fine sands. The hydraulic interconnections were evaluated by conventional hydrogeological methodology and stable water isotope analysis (δ²H and δ¹⁸O). Hydrodynamics and geochemistry indicate that the aquifer has flows of different hierarchies, both local and intermediate from upstream. The hydraulic, geochemical and isotopic relationships are influenced by morpholithological factors, the depth of the water table and anthropogenic activity (on-site sanitation systems, intensive agriculture and livestock farming, among others).

References

AHMED, M.; KHALIL, M. M. Isotopic and chemical composition of Egypt’s groundwater resources. In: GROUNDWATER quality and geochemistry in arid and semi-arid regions. Cham: Springer Nature Switzerland, 2023. p. 237-265. https://doi.org/10.1007/698_2023_1046

AKTER, F.; BISHOP, T.; VERVOORT, R. Space-time modelling of groundwater level and salinity. The Science of the Total Environment, v. 776, 145865, 2021. https://doi.org/10.1016/j.scitotenv.2021.145865

AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for examination of water and wastewater. 23 ed. Washington: APHA, AWWA, WPCF, 2017.

AZPURUA, M. A.; RAMOS, K. D. A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Progress in Electromagnetics Research M, v. 14, p. 135–145, 2010. https://doi.org/10.2528/pierm10083103

BALWAN, W. K.; KOUR, S. Wetland-an ecological boon for the environment. East African Scholars Journal of Agriculture and Life Sciences, v. 4, n. 3, p. 38-48, 2021. https://doi.org/10.36349/easjals.2021.v04i03.001

BARBIERI, M. Isotopes in hydrology and hydrogeology. Water, v. 11, n. 2, p. 291, 2019.

BIRKEL, C. et al. Characterization of surface water isotope spatial patterns of Scotland. Journal of Geochemical Exploration, v. 194, p. 71-80, 2018.

BLARASIN, M. et al. Application of isotope techniques to enhance the conceptual hydrogeological model and to assess groundwater sustainability in the Pampean Plain in Córdoba, Argentina. Isotopes in Environmental & Health Studies, v. 56, n. 5-6, p. 402-417, 2020. https://doi.org/10.1080/10256016.2020.1796658

BLARASIN, M.; CABRERA, A.; MATTEODA, E. Aguas subterráneas de la prov. de Córdoba. Río Cuarto: UniRío Editora, 2014.

BOWEN, G. J.; WEST, J. B. Isotope landscapes for terrestrial migration research. In: TRACKING animal migration with stable isotopes. New York: Academic Press, 2008. p. 79–106. https://doi.org/10.1016/s1936-7961(07)00004-8

CABRERA, A.; BLARASIN, M.; MALDONADO, L. Groundwater age and hydrothermalism of confined aquifers in the Argentine Pampean plain. Geothermal Energy, v. 5, p. 1-19, 2017. https://doi.org/10.1186/s40517-017-0064-1

CALLOW, J. N.; HIPSEY, M. R.; VOGWILL, R. I. Surface water as a cause of land degradation from dryland salinity. Hydrology and Earth System Sciences, v. 24, n. 2, p. 717-734, 2020. https://doi.org/10.5194/hess-24-717-2020

CLARK, I. Groundwater Geochemistry and Isotopes. Boca Raton: CRC Press, 2015. 456 p.

FELIZZIA, J. Informe técnico privado realizado para la Planta Láctea de La Serenísima en Canals. 2012.

FOSTER, S. et al. Groundwater quality protection: a guide for water utilities, municipal authorities, and environment agencies. Washington: The World Bank, 2003.

FOSTER, S. et al. Protecting the quality of public water-supply sources: a guide for water utilities, municipal authorities, and environmental agencies. 2 ed. Washington: The World Bank, 2009.

GAMBOA, C. et al. The origin of solutes in groundwater in a hyper-arid environment: a chemical and multi-isotope approach in the Atacama Desert, Chile. Science of the Total Environment, v. 690, p. 329-351, 2019. https://doi.org/10.1016/j.scitotenv.2019.06.356

GIACOBONE, D. B. et al. Contexto regional y local de recarga de acuíferos en la planicie fluvio-eólica de Marcos Juárez. 2023.

GONFIANTINI, R. Standards for stable isotope measurements in natural compounds. Nature, v. 271, n. 5645, p. 534-536, 1978. https://doi.org/10.1038/271534a0

HAGAGG, K.; HUSSIEN, R. A.; SADEK, M. A. H. Numerical modeling constrained by environmental isotopes for sustainable development of partially renewable aquifers in desert area. Carbonates and Evaporites, v. 38, n. 2, p. 30, 2023. https://doi.org/10.1007/s13146-023-00850-4

HEALY, R. W. Estimating groundwater recharge. Cambridge: Cambridge University Press, 2010.

HUANG, T. et al. Groundwater recharge in an arid grassland as indicated by soil chloride profile and multiple tracers. Hydrological Processes, v. 31, n. 5, p. 1047-1057, 2017. https://doi.org/10.1002/hyp.11089

JÓDAR, J. et al. Hydrogeochemical, isotopic and geophysical characterization of saline lake systems in semiarid regions: The Salada de Chiprana Lake, Northeastern Spain. Science of the Total Environment, v. 728, 138848, 2020. https://doi.org/10.1016/j.scitotenv.2020.138848

KAZEMI, G. A.; LEHR, J. H.; PERROCHET, P. Groundwater age. Hoboken: John Wiley & Sons, 2006.

KRUSE, E.; AINCHIL, J. Comportamiento hidrológico en grandes llanuras: caso de estudio Noroeste de la Provincia de Buenos Aires, Argentina. Augum Domuns, v. 5, 2017. https://doi.org/10.59069/tsvs0p56

MALDONADO, L. et al. Hydrogeochemical features and groundwater renewal rate estimates from deep aquifers in the Pampean plain, Córdoba province, Argentina. Journal of South American Earth Sciences, v. 85, p. 126-134, 2018. https://doi.org/10.1016/j.jsames.2018.05.006

MALDONADO, M. L. et al. Assessing groundwater age in confined aquifers from the central Pampean plain of Córdoba, Argentina. Radiocarbon, v. 58, n. 4, p. 833-849, 2016. https://doi.org/10.1017/rdc.2016.35

MISHRA, R. K. Fresh water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, v. 4, n. 3, p. 1-78, 2023. https://doi.org/10.37745/bjmas.2022.0208

NATIONS, U. The sustainable development goals 2016. ESocialSciences, 2016.

QUINODOZ, F. B. et al. Assessing interactions between groundwater and surface water in a Pampean stream. Hydrology Research, v. 48, n. 4, p. 1045-1057, 2017. https://doi.org/10.2166/nh.2016.100

ROHDE, M. M.; FROEND, R.; HOWARD, J. A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater, v. 55, n. 3, p. 293-301, 2017. https://doi.org/10.1111/gwat.12511

SCHELIGA, B. et al. Groundwater isoscapes in a montane headwater catchment show dominance of well‐mixed storage. Hydrological Processes, v. 31, n. 20, p. 3504-3519, 2017. https://doi.org/10.1002/hyp.11271

SCHIAVO, H. et al. Calcretas del suroeste de Córdoba. In: IMBELLONE, P. (ed.). Suelos con acumulaciones calcáreas y yesíferas de Argentina. Buenos Aires: FAV-UNRC, 2014.

SHEPPARD, S. M.; NIELSEN, R. L.; TAYLOR, H. P. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology, v. 64, n. 7, p. 755, 1969. https://doi.org/10.2113/gsecongeo.64.7.755

SOMERS, L. D.; MCKENZIE, J. M. A review of groundwater in high mountain environments. Wiley Interdisciplinary Reviews: Water, v. 7, n. 6, e1475, 2020.

TAUCARE, M. et al. Groundwater resources and recharge processes in the Western Andean Front of Central Chile. Science of the Total Environment, v. 722, 137824, 2020. https://doi.org/10.1016/j.scitotenv.2020.137824

TÓTH, J. Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeology Journal, v. 7, n. 1, p. 1-14, 1999. https://doi.org/10.1007/s100400050176

USUNOFF, E. et al. Hidrogeología de grandes llanuras: La Pampa húmeda argentina. Boletín Geológico y Minero, v. 110, n. 4, p. 391-406, 1999.

VAN DER GUN, J. Groundwater resources sustainability. In: GLOBAL groundwater. Amsterdam: Elsevier, 2021. p. 331-345. https://doi.org/10.1016/b978-0-12-818172-0.00024-4

VREČA, P.; KERN, Z. Use of water isotopes in hydrological processes. Water, v. 12, n. 8, 2227, 2020.

WASSENAAR, L. I. et al. A groundwater isoscape (δD, δ18O) for Mexico. Journal of Geochemical Exploration, v. 102, n. 3, p. 123-136, 2009. https://doi.org/10.1016/j.gexplo.2009.01.001

XU, Q. et al. The spatial patterns and impact factors of stable oxygen and hydrogen isoscapes in pond water: A case study on the water-source forests of the Hani terraced fields in Yunnan, China. Journal of Hydrology, v. 603, 127097, 2021. https://doi.org/10.1016/j.jhydrol.2021.127097

How to Cite
Pascuini, M., Cabrera, A., Blarasin, M., Fátima, B. Q., Veronica, L., Edel, M., … German, S. (2025). Spatial distribution of stable isotopes (18O and 2H): links between precipitation, surface and groundwater and geomorphological impact in a poorly drained plain, Cordoba, Argentina . Águas Subterrâneas, 39(1), e30291. https://doi.org/10.14295/ras.v39i1.30291